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Introduction

Recommendation systems form the basis of many applications like Netflix movie
recommendations, Amazon product recommendations etc. In this project:

A recommendation model, LightGCN [1], is built using GCN (SIGIR 2020).

A novel variant of original model, LightGCN++, is proposed.

Comparison of performance is done with traditional and state of the art models.
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Motivation

Traditional methods make recommendations based on the rating history of user.

However, this approach faces issues when dealing with new users. This problem of making
recommendations to users without rating history is referred as cold start.

Collaborative Filtering based methods which use the notion of K-nearest neighbours face
problems when dealing with non rich nodes.

LightGCN captures the user-item interactions as a bipartite graph.
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MovieLens Dataset

MovieLens is a popular benchmark dataset for recommendation systems.

It contains data about movies, users and ratings (on a scale of 1 to 5).
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MovieLens Dataset

Two variants of MovieLens dataset are used:

MovieLens 100K : 100,000 ratings from 1000 users on 1700 movies

MovieLens 1M : 1,000,000 ratings from 6000 users on 4000 movies
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Graph Convolution Neural Networks

LightGCN is based on Graph Convolution Neural Networks (GCN) which captures the
structural information present in the bipartite graph. It simplifies the overall propagation
rule by removing non-linearity.

Embeddings are computed via message aggregation using the following equations:
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Weighted Embeddings Average

For computing the final embedding, the model considers a weighted average with equal
weights to all the previous layers.

The final embeddings are computed as follows for αk = 1
K+1 :
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Model Architecture
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Loss Function

To evaluate our recommendation system, the scores are computed using the final
embeddings of user and items as follows:

ŷui = eTu ei (3)

Bayesian Personalized Loss (BPR) loss is a popular loss function in recommendation
systems. It gives higher preference to observed user-item predictions compared to the
unobserved ones. BPR loss is used in this project.

LBPR = −
M∑
u=1

∑
i∈Nu

∑
j /∈Nu

lnσ(ŷui − ŷuj) + λ||E (0)||2 (4)

The problem reduces to minimizing the BPR loss and training the model. Adam
Optimizer is used on top of Gradient Descent.
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Evaluation Metrics

The scores computed at the output layer are used to determine the top K scoring movies for
each user. Following evaluation metrics are used in the project:

MAP: Mean Average Precision

Top-K Precision: It denotes the fraction of K recommended movies that are liked by the
user.

Top-K Recall: It denotes the fraction of relevant movies that are recommended to the
user in K movie recommendations.

Normalized Discounted Cumulative Gain (NDCG): It considers the ordering of
retrieved responses from the recommendation. It is widely used in recommendation
systems.

nDCGp =
DCGp

IDCGp
(5)
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LightGCN++ : A Novel Contribution

LightGCN++ is the proposed novel modification.

For the final embedding computation, instead of equal weightage to each layer, more
weightage is given to later layers.

This is achieved by multiplying layer embeddings by α ϵ (0,1) such that the initial layer
embedding is multiplied K + 1 times by α and the last layer is multiplied only once by α.

Thus, more weightage is given to the last layer embedding.
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Solving the Cold Start problem

Given a new user with no past rating history, the embedding vector is computed for that
user using its profile features.

Next, we compute the scores of this embedding with all the movies and correspondingly
recommend the K movies with highest scores.
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Experimental Setup

Data is split into training, validation and test sets in 70:15:15 split ratio for both the 100K
and 1M datasets. Following hyperparameter values are used:

Hyperparameter Value
Embedding size 64

Number of layers 3

Learning rate 0.005

Batch size 1024

Number of epochs 100

Regularization parameter 0.0001

Top K recommendations 10
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Baselines

Comparison is done with following baselines on the evaluation metrics discussed before:

Alternative Least Squares [2] : It is a matrix factorization technique which minimizes
two loss functions alternatively. Firstly, it fixes the user matrix and runs gradient descent
using item matrix with L2 regularization and vice versa.

Singular Value Decomposition [3] : This approach partitions the utility matrix A into 3
matrices: U - orthogonal left singular matrix, S - diagonal matrix, V - diagonal right
singular matrix.

Neural Collaborative Filtering [4] : It uses Feed Forward Neural Network to train a
model for recommending items to users.
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Results

Data Algorithm MAP NDGC Top-K Precision Top-K Recall
100K ALS 0.004697 0.046619 0.049629 0.016688

100K SVD 0.012873 0.095930 0.091198 0.032783

100K NCF 0.108609 0.398754 0.349735 0.181576

100K LightGCN 0.121633 0.417629 0.360976 0.196052
100K LightGCN++ 0.141294 0.391641 0.43819 0.138974

1M ALS 0.002683 0.030447 0.036707 0.011461

1M SVD 0.008828 0.089320 0.082856 0.021582

1M NCF 0.065931 0.357964 0.327249 0.111665

1M LightGCN 0.089775 0.423900 0.385721 0.147728
1M LightGCN++ 0.091297 0.403426 0.47371 0.138974
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Results for MovieLens 100K dataset
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Results for MovieLens 1M dataset
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Conclusion

In this project, we have implemented LightGCN on 2 variants of MovieLens datasets
using TensorFlow.

We have proposed a novel variant of the original model, LightGCN++.

We have compared the performance of LightGCN and LightGCN++ with 3 baselines
(ALS, SVD & NCF) on 4 evaluation metrics (MAP, NDGC, Top-K Precision & Top-K
Recall) and promising results are obtained.

Cold start problem is also addressed.

Demo of LightGCN working built on Gradio, deployed on Huggingface.

Future Work: Here we are using order invariant convolutions for neighbor aggregration,
can we use permutation based convolutions if they give better results?

Code repository: GitHub

Gradio: Dataset Analysis Top K Recommendations
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https://github.com/Jimut123/FML_Project
https://fmlprojectcs725-movielensdatasetanalysis.hf.space/
https://fmlprojectcs725-recommendationmovielens.hf.space/
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