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Abstract

Deep Learning models are data dependent, i.e., they only perform well on un-

seen data from the same distribution on which they were trained on. In the case

of medical sectors, collecting and annotating data is a very costly process, in the

sense, it requires expert annotators who can hardly give enough time for annotating

and collecting data. For this reason, there are small repositories of data present

everywhere which varies even if the number of classes are same. In this work, we

have built an automated process to annotate and mask cells of Peripheral Blood

Smear, also classify the data using a closely related PBC dataset via domain adap-

tation to learn domain invariant features. This will help the process of counting and

identifying different types of white blood cells present in smear to identify certain

diseases according to some distribution. A novel demographic smear dataset is also

built in the process which will further help researchers to do novel innovative tasks,

e.g., generating new data synthetically via original dataset to suit any demography.

In the process, we have also surpassed the state-of-the-art model for PBC dataset

classification, and explored several ingenious ways to perform masking.
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Chapter 1

Introduction

Peripheral blood smear is a procedure to count and investigate blood samples [15]

under a microscope. There are various types of white blood cells that are present in

human body, some of them are shown in Figure 1.1. These cells arise in the bone

marrow and gives rise to different types of other blood cells, and hence known as

hematopoietic cells. The problem is to find instances of White Blood Cells (WBC’s)

from peripheral blood smear and detect which classes it belongs to.

The peripheral blood smear deals with counting and classifying what cells are

present in a slide, hence our task is to detect and classify, and then segment what

type of blood cells are present in a given image. This will help the doctors to au-

tomate the process of analyzing slides containing cells. There is very little related

work in this field since, getting the data is very costly. Data creation is an even

costlier process, given it needs to be labelled by expert annotators. The data may

vary according to demography of a place and analyzing the slides is only done by

medical experts.

We have received a part of our data from leading hematologist (Ramakrishna

Mission Seva Pratishthan, Kolkata 1). We have labelled each of the data by creating

segmentation masks. A typical smear slide is shown in Figure 1.2. Since data is lim-

ited, we need to adapt the data to another similar dataset with similar classes. For

this purpose, we perform domain adaptation on the PBC dataset which has 17092

images to classify data from smear slides. The pipeline for doing so is straightfor-

1https://belurmath.org/ramakrishna-mission-seva-pratishthan-kolkata/
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ward. First, we have to detect all the cells present in the slide via Mask RCNN,

Second, using the coordinates of the detected cell, we have to crop out and classify

which cell it is via the domain adaptation target classifier. We will see the methods

involved in doing so in the preceding sections.

Figure 1.1: Maturation and different types of human hematopoietic cells, Picture
Courtesy: Elsevier Inc https://www.netterimages.com/. We need not classify all
the cells present in this picture, since some cells are very rare and some forms a class
of other cells. The cells that are needed to be classified are discussed in the dataset
section.

The thesis is divided into the following chapters, first, we will look into the

datasets used and their overview. For getting the actual cell image from slides, we

have to perform certain masking techniques, we have tested various classical methods

for masking as well as novel deep learning methods. After getting the mask, we need

to extract the cell, hence we need precise bounding boxes and masks for doing so.

After the cell is extracted via Mask RCNN which takes care of region proposal

network and instance segmentation, we pass the segmented cell to the classifier

2
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Figure 1.2: A typical sample of smear slide under a microscope. Picture Courtesy:
Dr. Debashish Banerjee. A smear may contain various types of cells, mostly Red
Blood Cells (RBCs) as shown in gray disc shapes present all over the slides, we
need to take care of only White Blood Cells (WBCs), which are colored via certain
chemicals in purple that helps them to distinguish under a microscope.

which has been trained via domain adaptation to get actual detected labels of cells,

which acts as a layer of confidence from the detected label from Mask RCNN. This

helps the classifier learn features from both the domains of the data in a domain

invariant way. Using as much data as possible, since medical data are scarce, we

have created a pipeline which can detect, segment and also create mask for unseen

images.

3
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Chapter 2

Datasets

We have created a variety of dataset in this study, mainly a segmentation dataset

and a few classification dataset. We have also used the standard PBC dataset for

our study. The datasets are discussed in the following sections.

2.1 PBC dataset normal DIB

This is a classification dataset that is taken from Mendeley [1] (https://data.

mendeley.com/datasets/snkd93bnjr/1). There are a total of 17092 images present

in this dataset [3]. The classes that are present are:

• Basophil (BA)

• Eosinophil (EO)

• Lymphocyte (LY)

• Monocyte (MO)

• Immature Granulocytes (IG)

– Immature Granulocytes (IG)

– Myelocyte (MY)

– Metamyelocyte (MMY)

– Promyelocytes (PMY)

5
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Figure 2.1: Images of samples taken from PBC dataset normal DIB dataset. From
top left to bottom right: (a) Basophil (BA), (b) Eosinophil (EO), (c) Lympho-
cyte (LY), (d) Monocyte (MO), (e) Immature Granulocytes (IG), (f) Myelo-
cyte (MY), (g) Metamyelocyte (MMY), (h) Promyelocytes (PMY), (i) Neutrophil
(NEUTROPHIL), (j) Band Neutrophils (BNE), (k) Segmented Neutrophils (SNE),
(l) Erythroblast (ERB), (m) Platelet (PLATELET).

• Neutrophil (NEUTROPHIL)

– Neutrophil (NEUTROPHIL)

– Band Neutrophils (BNE)

– Segmented Neutrophils (SNE)

• Erythroblast (ERB)

• Platelet (PLATELET)

The distribution of the individual classes of the dataset is shown in Figure 2.2.

Samples taken from each of the classes are shown in Figure 2.1. The classes

labelled in bold are the superset of classes that is followed by them. There are 8
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Figure 2.2: The distribution of individual samples of the PBC dataset normal DIB
dataset. Note that, the dataset is highly imbalanced but we need to group some of
the classes to reduce the discrepancy.

classes in total that comprise this dataset.

2.2 PBC dataset normal DIB cropped

This dataset is a modified version of previous PBC dataset normal DIB dataset.

Thus, the distribution of different classes is same as the previous one. It is easy for

the model to learn essential features during domain adaptation when the two classes

have high resolution (same type) imagery in them, in that way the model can focus

on only the relevant cells rather than a bigger slide containing cluttered RBC’s.

The algorithm for extracting the cropped image is discussed in Algorithm 15.

We use color thresholding to get the mask using Hue Saturation Value 1 scale. After

that we use watershed [4] algorithm to extract the contours that is got from the

mask. We will discuss more about water shed algorithm in Methods for Masking

section. Since most of the cells start at the center of the PBC slide, but are of

different shapes and sizes, we can crop out a radius of the biggest contour starting

from center. We repeat this for every image of the dataset to get the whole cropped

1https://en.wikipedia.org/wiki/HSL_and_HSV
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Figure 2.3: Images of samples taken from PBC dataset normal DIB cropped
dataset. From top left to bottom right: (a) Basophil (BA), (b) Eosinophil (EO),
(c) Lymphocyte (LY), (d) Monocyte (MO), (e) Immature Granulocytes (IG),
(f) Myelocyte (MY), (g) Metamyelocyte (MMY), (h) Promyelocytes (PMY), (i)
Neutrophil (NEUTROPHIL), (j) Band Neutrophils (BNE), (k) Segmented Neu-
trophils (SNE), (l) Erythroblast (ERB), (m) Platelet (PLATELET).

dataset. It took 0.1448 seconds to process an image on average. The results of

the methods related to the algorithm are shown in Figure 2.6. The samples of the

images from this dataset is shown in Figure 2.3.

Visualization of PBC dataset normal DIB cropped dataset’s test set, i.e., 2609

images shown using t-SNE [24] (perplexity 50) visualization in Figure 2.4. This is

created by firstly doing PCA (Principal Component Analysis) [13] using 200 com-

ponents on images of size (360, 360, 3) and then visualizing the images. Similarly,

using a perplexity of 30 and taking 50 components on images of sizes (360, 360, 3),

we visualize the Smear Slides Cropped Dataset using t-SNE as shown in Figure 2.5

on 151 images (from test dataset).
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Algorithm 1: Algorithm for extracting the cells from
PBC dataset normal DIB dataset.
1 for each image of the PBC dataset normal DIB dataset do
2 image ← individual image of PBC dataset normal DIB dataset;
3 img ← copy of image;
4 hsv ← convert img from BGR to HSV ;
5 lower blue ← (100, 20, 20);
6 upper blue ← (300, 245, 245);
7 mask ← threshold hsv within [lower blue, upper blue];
8 mask ← dilate mask with 3 iterations;
9 res ← bitwise and with img and mask;

10 local Max ← compute the exact euclidean distance from every binary
pixel to the nearest zero pixel, then find peaks in this distance map
with min distance of 20 on mask;

11 markers ← perform a connected component analysis on the local
peaks, using 8− connectivity, then appy the watershed algorithm
using local Max;

12 labels ← apply watershed algorithm using markers and mask;
13 image ← draw circles from the uniquely identified contours and find

the coordinates of the biggest contour and store the radius using
labels on image;

14 crop ← Take H/2, W/2 as the central point and crop out the masked
image by taking the radius as the boundary;

15 end

2.3 Peripheral Blood Smear Slides and Smear Slides

Cropped

This is an ongoing dataset that is being created using CVAT, and the raw cell images

are being provided continuously. Since this is a segmentation dataset, we can crop

out the images as shown in Figure 2.7 to create a classification dataset for domain

adaptation. A sample of the dataset being created for the Basophil class is shown in

Figure 2.8. The distribution of cells extracted from this dataset is shown in Figure

2.9b. We will use this part of the dataset in performing Domain Adaptation, by us-

ing those classes which are common to both PBC cropped dataset and Smear Slide

Cropped dataset.
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Figure 2.4: t-SNE visualization of 2609 test images of
PBC dataset normal DIB cropped dataset’s test set (Up: Only images in 2D,
Bottom: Each of the individual images represented by class in 3D space).
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Figure 2.5: t-SNE visualization of 151 test images of Smear Slides Cropped dataset’s
test set (Up: Only images in 2D, Bottom: Each of the individual images represented
by class in 3D space).
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The classes that are present in this dataset are shown below:

• Band Cell

• Basophil

• Blast Cell

• Eosinophils

• Lymphocytes

• Myelocytes

• Metamyelocytes

• Monocytes

• Neutrophil

• Promyelocytes

The data distribution of the classes of the slides present is shown in Figure 2.9a.

12



(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.6: The process of automating the cropping of PBC dataset normal DIB
dataset. From top left to bottom: (a) A sample image from
PBC dataset normal DIB dataset, (b) the image is converted from BGR to
HSV, (c) mask obtained after applying the lower and upper threshold of blue color,
(d) the dilated mask to make it more prominent, (e) Bitwise and with the mask
and the original image, (f) Contours obtained by applying watershed algorithm on
the mask, (g) cropped out segmented image.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.7: Images of slides cropped from each of the classes from whole Smear
Slides Cropped Dataset. There are a total of 10 classes, From top left: (a) Band
Cell, (b) Basophil, (c) Blast Cell, (d) Eosinophils, (e) Lymphocytes, (f) Myelocytes,
(g) Metamyelocytes, (h) Monocytes, (i) Neutrophil, and (j) Promyelocytes. These
samples will be used to do Domain Adaptation.

Figure 2.8: A sample of Basophil being labelled using CVAT (Computer Vision
Annotation Tool) software to create a segmentation dataset from Smear Slides.
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(a) Data distribution of slides of Smear Slides.
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(b) Data distribution of individual cells cropped from Smear Slides.

Figure 2.9: Distribution of Smear Slide Datasets, (a) Segmentation dataset (b)
Cropped Classification dataset.
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Chapter 3

Experimental Methods for

Masking

To get the domain adaptation pipeline running we need to firstly segment the cell

to detect which class it belongs to. The more clearly it segments the cell, the more

helpful it will be to for the detection model to classify the class of the cell. There are

various masking methods that have been tested, starting from the classic watershed

algorithm, to detecting blobs, to using novel GRAD CAM method for creating the

mask for cell. Later we found out that Mask RCNN does a good job in segmenting

out the cell. Each of the methods are discussed in the following sections.

3.1 Watershed Algorithm

Watershed algorithm [4] is a classical algorithm used for image segmentation. Us-

ing watershed one can use user defined markers, to fill local minima of topographic

elevations. It treats input images’ pixel’s intensity values as topographic elevations.

The filling starts from local minima and continues till there is a boundary between

two water bodies (here, also referred to as images).

A sample of image taken from Smear slide is used to demonstrate simple example

of watershed algorithm as shown in Figure 3.1. We can see that watershed performs

quite good job in segmenting the cell from this image. This is not true for all the

images, for example, the image shown in Figure 3.2 (above) does a relatively good job

in segmenting blast cell, but it doesn’t do a good job for segmenting promyelocytes
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cells as shown in Figure 3.2 (below). So, when we need extreme precision to segment

out cell’s mask, watershed algorithm will not do a good job.

3.2 DoH (Difference of Hessian), DoG (Difference

of Gaussian) and LoG (Laplacian of Gaussian)

Blob detectors are one of the earliest classical methods for detecting interest points.

In this section we will describe our own combined method for segmenting cells from

PBC dataset normal DIB dataset.

The method presented in Algorithm 12 gives an approximate mask for segmenting

PBC dataset’s cells. The reason behind this is, the cells are of different shapes and

sizes, and blob detectors can capture the red blood cells too which are present in

enormous amount. What we did is, the bigger the size of the detected cell, the more

the layer of thickness added to the confidence mask. We add a non-linearity to the

addition of mask purposefully to gain more weight to the bigger sized cells. After

getting the layers of confidences, we threshold and apply erosion to get the most,

prominent area of the cell, consequently deleting the less confidence areas.

Algorithm 2: Algorithm for extracting mask from the cells of
PBC dataset normal DIB dataset.
1 im ← individual image of PBC dataset normal DIB dataset ;
2 src ← copy of im ;
3 src ← Gaussian Blur using (3, 3) kernel on src ;
4 gray ← convert im to gray scale ;
5 imgs ← Apply Sobel filter to gray and select the best one using scale

range in [0,10] and delta range in [0,10] imgs ← Gaussian blur imgs with
kernel size (3,3) ;

6 blobs log ← Laplacian of Gaussian with max σ = 80, num σ = 10,
threshold = 0.1;

7 blobs dog ← Difference of Gaussian with max σ = 80, threshold = 1;
8 blobs doh ← Difference of Gaussian with max σ = 80, threshold = 0.001;

9 c ← compute circles with radius of explog2(r) and add individal circles to
the layers of blank image;

10 layer ← threshold to get mask;
11 mask ← apply erosion on layer;
12 repeat for every image of PBC dataset normal DIB dataset;
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Figure 3.1: The steps involved in performing watershed algorithm to a slide. From
top left to bottom right: the original slide image, the gray scaled version of origi-
nal image, the gray scale image after being applied Otsu’s thresholding, performing
opening (morphological operation) on the resulted image for 2 iterations, after dila-
tion of the resulting image which forms the background, after applying L2 distance
which is sure foreground, the unknown area, the markers for performing watershed
algorithm, the resulting image after watershed algorithm.
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Figure 3.2: The result of applying watershed algorithm on an image of slide contain-
ing blast cell, which is able to segment almost all the cells properly (as seen at the
top, which is a good example). The figure below shows the application of watershed
on a slide containing promyelocytes and it is a bad example, cells are not segmented
right by watershed algorithm.
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Figure 3.3: From top left to bottom right: A sample of raw image (Lymphocyte)
from PBC dataset normal DIB dataset dataset after applying Gaussian smoothing
with a filter size of (3,3), using blob detectors of three types, i.e., Laplacian of
Gaussian (LoG), Difference of Gaussian (DoG), and Determinant of Hessian (DoH),
images after applying Sobel filter of different deltas and sigma, the stacked layers
of confidences, applying thresholding on stacked layers of confidence, after repeated
erosion on the resulting confidences, the final mask obtained superimposed on the
input image.
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Figure 3.4: From top left to bottom right: A sample of raw image (Basophil) from
PBC dataset normal DIB dataset after applying Gaussian smoothing with a filter
size of (3,3), using blob detectors of three types, i.e., Laplacian of Gaussian (LoG),
Difference of Gaussian (DoG), and Determinant of Hessian (DoH), images after
applying Sobel filter of different deltas and sigma, the stacked layers of confidences,
applying thresholding on stacked layers of confidence, after repeated erosion on the
resulting confidences, the final mask obtained superimposed on the input image.
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Figure 3.5: From top left to bottom right: A sample of raw image (Monocyte)
from PBC dataset normal DIB dataset dataset after applying Gaussian smoothing
with a filter size of (3,3), using blob detectors of three types, i.e., Laplacian of
Gaussian (LoG), Difference of Gaussian (DoG), and Determinant of Hessian (DoH),
images after applying Sobel filter of different deltas and sigma, the stacked layers
of confidences, applying thresholding on stacked layers of confidence, after repeated
erosion on the resulting confidences, the final mask obtained superimposed on the
input image.
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Figure 3.3 shows an implementation of the algorithm, the first image is a smoothened

version of the original image for which the Sobel filter is applied on as shown in black

and white. After applying sobel filter, we apply different blob detectors as shown

in the second image from top left. We then get some layers of confidences. The

confidences are then threshold to get the actual possible mask of the highest layer

of confidences. The confidence is then eroded to get a much better mask, and it is

applied on the original image to mask the relevant cell portion. In this example, the

algorithm performs relatively well.

Another example is shown in Figure Figure 3.4 which also does relatively well,

but the example shown in Figure 3.5 is unable to segment the whole cell region, which

shows the incapability of the above method on diverse image samples. Probably we

could have tried different innovative techniques to segment the cell, but every time

we need to hardcode or change the algorithm to perform well on different samples

of the slide. It may even happen that the same method does not perform well on

another domain’s dataset where the slide is of a different color and texture.

3.3 GRAD CAM based novel method for masking

GRAD-CAM [20] is a method for producing visual explanations from a large class

of Convolutional Neural Network models that helps to make them more tanspara-

ble and explainable. It was mainly built to understand why neural network models

failed by providing visual explanations to the confidence that the model sees. It can

be added to any convolutional layers to check the gradients which are concentrated

on a certain region which can be traced back to the input image. It was mainly

designed to check the transparency of visual question answering systems.

It generates explanations from deep networks via gradient localization. A sample

of the explaination is shown in Figure 3.6. It is robust to adversarial perturbations.

It is more faithful to underlying models. It helps to achieve model generalization

by identifying underlying bias and helps to understand what the model sees. The

authors recommend to use the deeper layers for this particular method, since it cap-

tures more semantic concepts and is used to get better results.

We have utilized this functionality of GRAD-CAM to get the confidence segmen-
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Figure 3.6: Examples of GRAD-CAM in visual question answering systems. When
focused on a particular word, the model learns to focus the gradient on a particular
part of the picture. (Picture Courtesy: Reproduced with permission from Ram-
prasaath R. Selvaraju.)
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Figure 3.7: A 11-layer Deep CNN model to get the mask from each of the convolution
blocks to segment the cells present in the PBC dataset normal DIB dataset.

25



tation mask from each layer of the proposed network. The proposed model is a simple

11-layer network for deriving the segmentation mask from the PBC dataset normal DIB

dataset is shown in Figure 3.7. We get the confidence score from each of the convolu-

tional layers. We add each of the masks and we threshold the mask by the maximum

value obtained from the layered masks. After thresholding we apply a dilation via

a box kernel of size 5x5.

Hence, a simple classification model will be used to get masks for each of the

images of the PBC dataset normal DIB dataset. This is a novel method, since there

is very few related works on this like detecting fetus [12], and there is a huge scope

of improvement on this proposed method. The working version of the proposed

method is shown in Figure 3.8 which does a relatively good job. Similarly another

example shown in Figure 3.9 does even better job in segmenting the image.This may

not give an exact accurate segmentation mask but we can get an idea of where the

cell might be located from just a classification model.

We later found out that taking the confidence score from only layers 3, 4 and 7 is

good as well, which also results in saving some computation. The comparison of the

two segmentation mask acquiring technique is shown in Figure 3.10. There might be

some noise in the captured image, but it might be relevant when there are a lot of

images present. This method is just a prototype for converting classification model

to segmentation model and hence there is a lot of scope for improvement. Figure

3.11 left shows a good segmented sample, while on the right shows a sample which

is not segmented good.
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Figure 3.8: The steps involved in creating masks via the PBC dataset normal DIB
slide images. The images on bottom shows the individual confidence masks that is
created for each convolutional layer of the model, the image on the top left shows
the assembled images of confidence masks and the image on the top right is the
masked original image with an approximate mask covering the cell.
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Figure 3.9: The steps involved in creating masks via the PBC dataset normal DIB
slide images. The images on bottom shows the individual confidence masks that is
created for each convolutional layer of the model, the image on the top left shows
the assembled images of confidence masks and the image on the top right is the
masked original image with an approximate mask covering the cell.

28



Figure 3.10: Left: From all the layers, Right: From layers 3,4 and 7.

Figure 3.11: Images segmented by taking confidence scores from layers 3, 4 and 7.
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Chapter 4

Classification

4.1 Classification models applied on PBC datasets

We have performed classification on PBC dataset normal DIB dataset as well as

PBC dataset normal DIB cropped dataset. Selecting a classifier is a rigorous job

since we have to check all the related literature for doing exhaustive search on which

model the classifier performs best in the test case. We have created a seed of 42

using NumPy’s random function for reproducibility and fair testing of all the mod-

els in the given dataset. The original paper [3] was using about 80% as training set

and the rest 20% as test set. Among the 80% of training set the authors were using

20% as validation set. So, they were splitting 64-16-20 as training-validation-test set.

The style of architecture that we used for testing the state-of-the-art related

literature’s backbones (standard model) is shown in Figure 4.1. The architecture

is simple, we use the convolutional layers and do a Global Average Pooling at the

end of convolutional layers, and add a few dense layers at the end of them. These

fully connected layers are 128-32-8, where 8 is the number of classes to be classified

through SoftMax activation function.

We have kept this ratio for getting the result using the standard datasets, upon

which we have surpassed the state of the art as reported in the original paper. For

transparency, we have not changed the seed and we reported the results on 20%

of the whole dataset as the test set without data augmentation. The application

of various state of the art models on the PBC dataset normal DIB cropped and
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Figure 4.1: Basic backbone that is used in building the classification models, A
Global Average Pooling is used after all the Convolutional backbone with Fully
Connected layers and at last a output layer of 8 classes with SoftMax as activation.
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Figure 4.2: The number of parameters in million for different models. VGG16 with
14.78 M, Xception with 21.12 M, InceptionV3 with 22.06 M, Resnet101 with 42.92
M, InceptionResNetV2 with 54.53 M, and NASNetLarge with 85.43 M parameters.
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PBC dataset normal DIB datasets and evaluating them on Precision, Recall and

F1-score on the test set, are shown in Table 4.1.

Model Name Dataset Type Precision Recall F1-score

Inception V3 [22]

PBC cropped fully trained 96.01 95.74 95.70
PBC cropped freezed 91.15 91.15 90.97
PBC dataset fully trained 98.73 98.88 98.89
PBC dataset freezed 91.61 91.42 91.28

Inception-
ResNetV2 [21]

PBC cropped fully trained 98.84 98.99 98.82
PBC cropped freezed 93.73 93.90 93.66
PBC dataset fully trained 99.02 99.07 98.93
PBC dataset freezed 93.60 93.41 93.45

NASNetLarge [26]

PBC cropped fully trained 96.63 96.51 96.64
PBC cropped freezed 92.51 92.38 92.39
PBC dataset fully trained 98.84 98.92 98.75
PBC dataset freezed 93.63 93.67 93.78

VGG16 [16]

PBC cropped fully trained 98.49 98.29 98.22
PBC cropped freezed 95.03 94.85 95.05
PBC dataset fully trained 98.73 98.78 98.69
PBC dataset freezed 93.60 93.23 93.27

Xception [5]

PBC cropped fully trained 98.96 98.81 98.75
PBC cropped freezed 93.59 93.46 93.29
PBC dataset fully trained 98.84 98.81 98.75
PBC dataset freezed 91.51 91.19 91.27

Resnet101 [10]

PBC cropped fully trained 98.37 98.56 98.40
PBC cropped freezed 71.05 68.95 68.47
PBC dataset fully trained 98.84 98.92 98.75
PBC dataset freezed 68.87 70.22 68.03

Table 4.1: Application of various state of the art models on
PBC dataset normal DIB and PBC dataset normal DIB cropped datasets with
Adam Optimizer and batch size of 16 and learning rate of 1e-4 on test set. (Only
NASNetLarge has a batch size of 8)

There are various classifier which have been tried and experimented, and the pa-

rameters (in million) of each of them are shown in Figure 4.2. The table 4.1 shows

some interesting properties, when the models are trained with just the freezed param-

eters, i.e., with no fine tuning, the PBC Cropped dataset does a relatively better job

in classifying in most of the models. The difference between fine-tuning and freezed

is that during freezed, we are only training and updating the weights of the fully
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Figure 4.3: Image which is passed to VGG16 for generating features as shown in
Figure 4.6.

connected layers, whereas in fine-tuning, we are training the whole network, i.e.,

not just using ImageNet’s weight as convolutional backbone, but retraining to learn

specific features according to the problem (i.e., identifying cells for classification).

Whereas in fully trained version we can clearly see that almost all the models do a

better job in classifying the whole slide. This may happen due to the fact that the

size information is lost when we are cropping and resizing the data, also, since we

are cropping out the cells, there might be some relevant texture information around

the cell which the model finds helpful in classifying the cell. But for the detection

part, the cells are almost of same size, we need to crop the masked cell out and then

classify it to see which class it belongs to.

In Figure 4.4, we see what sort of features the model learns to respond to. The

figure on the left shows the ImageNet weights that are learnt by the initial model

[25] which we are using for transfer learning and the figure on the right shows the

initial weights fully trained on the PBC dataset normal DIB dataset, hence helping

the model to classify specialized data, restricting and shifting the feature space. The

way we make these visualizations is simple, we create input images that maximizes

the activations of a specific activation on a target layer. Such images represent the

visualization of patterns a filter responds to. We do gradient accent to compute

the loss for the image which takes the image to a state which respond to the acti-

vation function more strongly. These images are selected from block2 conv2 and

block5 conv3 of each of the models. The feature maps obtained by the first and

last convolutional layer of training VGG16 model on an image shown in Figure 4.3

is shown in Figure 4.6.
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From Table 4.1, it is clear that InceptionResNetV2 performs better than most of

the backbone models in classifying the PBC dataset normal DIB and PBC cropped

datasets, hence giving a Precision of 99.02, a Recall of 99.07 and a F1-score of 98.93

in PBC dataset normal DIB dataset. The confusion matrix of each of the model

over the same test set is shown in Figure 4.5. The only mistake the models are

making are predicting Lymphocytes as Erythorblast.

The training and validation graphs obtained by all the five models are shown in

Figure 4.7 for cropped dataset and Figure 4.8 for full dataset respectively. We have

collected the Accuracy, Loss, AUC, Precision and Recall for all the models, and we

see that the validation graph might have a bit of kinks due to the rough contour of

the higher dimensional loss. This generally happens when there are outliers in the

data which does not help in optimizing using mini-batch gradient descent 1

4.2 Classification models applied on Smear Slides

Cropped datasets

Model Name Precision Recall F1-score

Inception V3 77.41 75.57 74.44
Inception-
ResNetV2

81.07 76.91 74.93

NASNetLarge 61.79 54.37 51.29
VGG16 73.54 72.72 72.62
Xception 82.15 78.80 76.96
Resnet101 72.94 76.84 74.39

’

Table 4.2: Application of various state of the art models on Smear Slide Cropped
dataset with Adam Optimizer and batch size of 16 and learning rate of 1e-4 on test
set. (Only NASNetLarge has a batch size of 8)

Since from Table 4.1, we can see that the best performing models are fully trained

version of weights that were trained on ImageNet dataset, so we will be saving com-

putations and time for only finding the results for the fined-tuned version of the

1https://stats.stackexchange.com/questions/303857/explanation-of-spikes-in-training-loss-vs-
iterations-with-adam-optimizer
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model. For the preceding experiments, we have kept the similar proportion in cre-

ating the train-validation-test split, i.e., using about 80% of the whole dataset as

training set and the rest 20% as test set. Among the 80% of training set they were

using 20% as validation set. Hence 64-16-20 of the whole datasets as the training-

validation-test set. The architecture of the backbone model is same as shown in

Figure 4.1.

The results obtained can be seen in Table 4.2. We have ensured the proper and

same division of training-validation-test images by applying seed to the shuffled im-

ages. From the two tables, i.e., Table 4.1 and Table 4.2, we can clearly see that the

Xception Backbone performs better than all of the models, in PBC cropped and

Smear Slides Cropped dataset.

Since the dataset have a smaller number of images (762 images), as compared to

PBC Dataset (17092 images), for this reason, the validation graphs will have tur-

bulence when converging. The graphs of training and validation metrics are shown

in Figure 4.10. The validation metrics do converge since, we are using the state-of-

the-art models, which can adapt to difficult datasets, furthermore we are fine-tuning

the already trained model on ImageNet dataset, for this reason, the accuracy is

quite good, without data augmentation. The confusion matrix is shown in Figure

4.9. From the figure, it looks like NASNetLarge have visually not so good confusion

matrix as compared to the other models, also in Table 4.2 we can see the same result.

For the evaluation of performance for the Domain Adaptation pipeline, we use

PBC cropped and the Smear Slides Cropped datasets, and Xception performs collec-

tively well in each of the datasets. The results after applying and studying different

experiments with the domain adaptation part is described in Chapter 6.
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Figure 4.4: An illustration showing the patterns that the selected layers of the
VGG16 model learns (top : block2 conv2 layer and bottom: block5 conv3 layer),
the left figures show the freezed version of the weights, i.e., the model trained on
only ImageNet dataset capturing the natural imagery’s features, and the right figures
shows the fully trained version of the weights, i.e., the features that are modified to
identify only cell images, hence restricting to a specialized problem.
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Figure 4.5: Confusion matrix of the best performing models i.e., From top left to
bottom right: Inception V3, InceptionResNetV2, NASNetLarge, VGG16, Xception
and Resnet101 in each of the respective datasets. Here, the corresponding labels
are: 0 (Eosinophil), 1 (Neutrophil), 2 (Monocyte), 3 (IG - Inactive Granulocytes),
4 (Basophil), 5 (Erythroblast), 6 (Platelet), 7 (Lymphocyte). The names were used
as numbers due to lack of space.
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Figure 4.6: The feature maps that were generated by the layer 1 (64 filters, up) and
layer 18 (512 filters, bottom) of VGG 16 architecture provided by Keras.
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Figure 4.7: The graphs obtained by training and validation of PBC cropped dataset
by the application of all the five models, i.e., VGG16, Xception, InceptionV3,
Resnet101, InceptionResNetV2, NASNetLarge (by doing fine-tuning). From top
to bottom, training and validation metrics on Accuracy, Loss, AUC (Area Under
Curve), Precision and Recall.
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Figure 4.8: The graphs obtained by training and validation of PBC full dataset
by the application of all the five models, i.e., VGG16, Xception, InceptionV3,
Resnet101, InceptionResNetV2, NASNetLarge (by doing fine-tuning). From top
to bottom, training and validation metrics on Accuracy, Loss, AUC (Area Under
Curve), Precision and Recall.
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Figure 4.9: Confusion matrix of the fully trained models i.e., From top left to bot-
tom right: Inception V3, InceptionResNetV2, NASNetLarge, VGG16, Xception and
Resnet101 in each of the respective datasets.
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Figure 4.10: The graphs obtained by training and validation of Smear 10 Cropped
(10) dataset by the application of all the five models, i.e., VGG16, Xception, Incep-
tionV3, Resnet101, InceptionResNetV2, NASNetLarge (by doing fine-tuning). From
top to bottom, training and validation metrics on Accuracy, Loss, AUC (Area Under
Curve), Precision and Recall.
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Chapter 5

Mask RCNN

5.1 What is Instance segmentation?

Instance segmentation deals with recognizing and understanding what is in the im-

age in pixel level. It deals with assigning different colors to different instances of the

same object. In figure 5.1 (left), different instances of balloons are assigned different

colors. This is a hard task since objects might be occluded and it is necessary to find

different parts of the same object. Here, in Figure 5.1 (right), a chair is occluded but

for a good instance segmentation algorithm, it is necessary to recognize this object

correctly and assign the necessary color.

Mask RCNN [9] 1 returns object’s bounding boxes, classes present, and precise

masks of the objects for an input image, hence doing instance segmentation. It

uses a convolutional backbone, i.e., FPN (Feature Pyramid Network), for preserving

features at different scales. It is based upon a Faster RCNN [18] backbone, so it

uses its architecture for getting the features from a given image. The architecture

uses RNP (Region Proposal Networks) which contains bounding boxes, also known

as anchors, which helps to detect objects faster without searching the whole image.

The main contribution of the network is it uses ROI Align to align the features at

different scales using bilinear interpolation method, which helps to remove location

misalignment caused due to ROI pooling, hence, significantly increasing performance

in getting segmentation masks near to the ground truth. The architecture of Mask

RCNN is shown in Figure 5.2.

1Collaborators: Aniket Bhattacharyea (aniketmail669@gmail.com)
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Figure 5.1: Left: Instance segmentation of balloons, where each balloon is uniquely
identified and assigned different colors. Right: Instance segmentation deals with
assigning same color to even occluded parts of the same object, which might not be
connected directly.

Figure 5.2: The architecture of Mask RCNN using Faster RCNN as backbone to
collect the important features that will be needed by the detector to create near
accurate segmentation masks.
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He et. al [9] have applied Mask RCNN to COCO test set and the segmenta-

tion mask obtained are shown in Figure 5.3 (top). Similarly, when Mask RCNN is

applied to City Scape dataset, the Mask RCNN module recognizes every detail ac-

curately. This shows the capability of Mask RCNN in segmenting natural imagery.

We will be using this architecture as the starting of pipeline, by training it on Smear

Slide dataset to get near accurate segmentation mask. This will be the starting point

of the pipeline to get the cell which will be passed to the domain adaptation pipeline.

5.2 Training Mask RCNN - Initial Configurations

We have used the Matterport’s implementation of MaskRCNN [2] in Keras (Python3).

Brief architecture of Mask RCNN may be seen in Figure 5.4. The architecture uses

ResNet 101 backbone for getting the features, which is in turn trained on the MS

COCO (Microsoft Common Objects in Context) [14] dataset. The dataset was di-

vided into 80-10-10, i.e., 80 train, 10 validation and 10 test to perform training.

The configurations that were used in the Training of Mask RCNN pipeline were,

3 images per GPU, we were using Quadro GV100 GPU with 32 GB RAM which

could easily handle that. There were 10 classes and 1 Background, so total of 11

classes per pixel were detected. Steps per epochs were set to 500, which would result

in prolonged training, whereas validation steps were set to 40. A minimum confi-

dence of 0.7 was set to detect an instance of the object present in the slide. 128

Regions of Interest were used for the training per image. 200 instances of Ground

truth can be used for training, whereas the detected instances were set to 100. In

the training of the Mask RCNN, the annotation files in .xml were parsed for each of

the classes and were set to training internally. For the proper training of the Net-

work, 200 epochs were set for training the head of the network, whereas extra 200

epochs were set for training the whole dataset. This is done to initialize the weights

properly by doing part wise training. While the Network’s head were training, the

pretrained Convolutional layers were not updating the weights, whereas when the

whole network was training, everything was being updated. A learning rate of 0.001

was used (present as default in the package), which was subclassed and overridden

from the Mask RCNN package. It also used a momentum of 0.9 during training.
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Figure 5.3: Top: Mask RCNN applied on COCO test set. Bottom: Mask RCNN
applied on CityScape dataset. (Picture Courtesy: Reproduced with permission from
Kaiming He.)
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Figure 5.4: Mask RCNN architecture in brief. The architecture starts with a set of
Convolutional Networks in the left, with a Region Proposal Network in the middle,
where the features are made same sized with ROI pooling before passing to a set of
Fully Connected Layers (network heads) which gives bounding boxes (using Regres-
sor) and classes (using Softmax) as outputs.

The default optimizer of SGD (Stochastic Gradient Descent) [19], was used with

all these settings. A separate annotation file was created to seperate these files for

passing into Mask RCNN for training.

The losses can be formulated as Ltotal = Lcls +Lbox +Lmask .The graph of train-

ing loss by training the heads of the network is shown in Figure 5.5. The result

of training loss for the whole network is shown in Figure 5.6. The graph might be

a little misleading, but the losses while training the heads converge from a higher

value to a lower value, while in the case of training the whole network, the losses

are already converged, so it tries to oscillate a bit keeping everything almost same

throughout the training. The networks make micro adjustments during this training.

5.3 Results of Mask RCNN on Test Dataset

After the training we have saved the model in mask rcnn blood final model.h5

file. This will help us to run the model anywhere without training it again, we

have also built a code which can point to any directory containing only test files

to be masked by the model, and by doing this it will return a .JSON file which

will contain all the detected mask (in polygon), class name, coordinates of bounding

box, image name, height and width for the particular examples present in the folder.
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Figure 5.5: Training and Validation Losses for Network Heads of Mask RCNN.
From top: Box Loss (Lbox), Class Loss (Lcls), Mask Loss (Lmask), and Total Loss
(Ltotal).
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Figure 5.6: Training and Validation Losses for theWhole Network of Mask RCNN.
From top: Box Loss (Lbox), Class Loss (Lcls), Mask Loss (Lmask), and Total Loss
(Ltotal).
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A sample of JSON file generated is shown below, the JSON is contained in the

”data” key.

{"data":

{"0":

{

"filename":"IMG_4302.jpg", "height":3024, "width":4032,

"masks":

[

{

"class_name":"neutrophil",

"score":0.9632735252,

"bounding_box": { "x1":22, "x2":740, "y1":436,"y2":1169},

"vertices":[[397.0,1142.5], ... , [396.0,1141.5],

[397.0,1142.5]]

},

{

"class_name":"neutrophil", "score":0.9132735252,

"bounding_box": {"x1":223, "x2":940, "y1":936, "y2":1769},

"vertices":[[223.6,940.5], ... ,

[224.3,939.4], [223.6,940.5]]

}

]

},

"1":

{

...

}

...

}

}

---------------------------------------------------------------

A sample of JSON file generated using the Mask RCNN custom scipt

Some of the examples of cell images detected by Mask RCNN is shown in Figure
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5.7, 5.8, 5.9 and 5.10. The top image shows the Ground Truth of the instance,

visualized using our custom script, which is clearer than Mask RCNN’s script, and

similarly, we have parsed the .JSON file and collected the visualized images in the

folder. There files are taken from the test set, which comprises about 10% of the

whole dataset.

5.4 Results of Mask RCNN onMixed Unseen (with-

out GT) images

In general, the Peripheral Blood Smear slides will have mixed cells containing dif-

ferent variety of cells clumped together in one smear slide. The training of Mask

RCNN was done in slides which contained only single class instances per images

(mostly). In the following section we will see how the model behaves when there are

a lot of cells present. This is achieved via keeping the new slides in the folder and

pointing the script for generating the JSON file to that folder. The JSON file would

be present in the folder containing the file. After that, we have collected the JSON

file and checked the mask generated by our own script. The results are shown in

Figure 5.11, 5.12, 5.13 and 5.14 respectively. From the images we can see that Mask

RCNN does a relatively better job in training about 400 or so images and testing

on unseen and different type of images.

From the results obtained, we can certainly say that the more the amount of

data supplied, the better the model will be able to segment and detect the images

present. The Mask Generated is quite good, given there are some confusing fluid

present in the images.

5.5 Future Scope - Automated Masking of Smear

Slides Dataset

We have certainly seen that Mask RCNN does a great job in masking out the cells

from unseen data. This motivates us to automate the most labour intensive task
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Figure 5.7: Top: The Ground truth containing an instance of Neutrophil, Bottom:
Detected and masked Neutrophil via Mask RCNN.
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Figure 5.8: Top: The Ground truth containing an instance of Neutrophil, Bottom:
Detected and masked Neutrophil via Mask RCNN.
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Figure 5.9: Top: The Ground truth containing an instance of Basophil, Bottom:
Detected and masked Basophil via Mask RCNN.
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Figure 5.10: Top: The Ground truth containing an instance of Band Cell, Bottom:
Detected and masked Neutrophil Cell via Mask RCNN (a wrongly detected sample).
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Figure 5.11: Sample of Unseen mixed slide taken by testing Mask RCNN.
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Figure 5.12: Sample of Unseen mixed slide taken by testing Mask RCNN.
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Figure 5.13: Sample of Unseen mixed slide taken by testing Mask RCNN.
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Figure 5.14: Sample of Unseen mixed slide taken by testing Mask RCNN.
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of generating polygons for the cells. The new tool will be used to generate polygon

and dump it into the existing annotation .xml file. We will be able to upload it to

CVAT for fine tuning the already automated annotated file and it will significantly

reduce the time and cost for annotation.
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Chapter 6

Domain Adaptation

6.1 Domain Adaptation as a part of Transfer Learn-

ing

Figure 6.1: Flowchart showing the hierarchies of Transfer Learning [6].

Transfer learning is the future of AI.1 It is becoming increasing popular in retrain-

ing deep networks by using predefined weights which was trained in bigger datasets

1https://ruder.io/transfer-learning/
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to capture state of the art results. That knowledge is then transferred to some other

problems where the data is less. A schematic representation of Transfer Learning is

shown in Figure 6.1. Domain adaptation is a small part of this tree.

There has been a long challenge of training images in an unsupervised way. There

are a lot of unlabeled data in the internet but very few labelled data which needs

annotators (human resources) to label them. Unsupervised domain adaptation by

backpropagation [7] is a way to utilize some of the labelled data to learn features

from some of the unlabeled data in such a way that we get domain invariance fea-

tures from both the dataset. We will use this style of architecture to train our own

model which learns to classify images from both the domain, i.e., here PBC and

Smear Slides.

New methods are also implemented, for example leveraging the power of ad-

versarial networks [23] to outperforms classification models on standard datasets.

These type of networks captures the distribution of classes in both the domains, and

is best at its tasks. Domain adaptation can also be applied to segmentation problem

[17], but one dataset needs to have proper segmentation mask and in large numbers.

In our case, we have masks but the number of data slides is low, and for the PBC

dataset, the mask may contain variety of noises, which will be ineffective in training

good networks for medical dataset where critical information is necessary. There

have been works for performing detection [11] by training models via domain adap-

tation. There are also few works in medical sectors which uses domain adaptation,

a good survey can be found in [8].

6.2 Domain Adaptation Pipeline

Since, we have the Mask RCNN and the PBC Extraction algorithm working pretty

well, we will now need to run the domain adaptation pipeline. The pipeline is shown

in Figure 6.2. There are two stages of the extraction process, one to crop out cells

from the PBC dataset to create the PBC Cropped dataset, another to crop out

the masked images from the Smear Slides, this will create the Smear Slides Cropped

dataset. The pipeline shown in bottom will also be used to crop out the cells present

in individual smear slides and then perform classification on them.
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Figure 6.2: Domain Adaptation pipeline in general. We crop out the PBC Slides by
Watershed algorithm, and for the Smear Slides, we use Mask RCNN to get out the
mask. These two will comprise the dataset from two different domains.

6.3 Experiments on the common classes

Before performing Domain Adaptation, we need to show how the model performs

for 8 classes, which have not been tested before. For this purpose, we have shown

the result for the 8 classes which are common. For comparing the results of Domain

Adaptation, we need to show how the Xception model performs on Smear Slides

Cropped 8 classes by training on PBC Cropped DA 8 classes dataset. Similarly,

we have to show the reverse, i.e., how the model performs on PBC Cropped DA 8

classes by training on Smear Slides Cropped 8 classes. We also have to show how

the model performs when the dataset is mixed.

6.3.1 Xception Trained on PBC cropped DA 8 classes and

testing on Smear Slides Cropped 8 Clases DA

We train and fine-tune Xception model on PBC cropped dataset with 8 classes, test

on the same dataset and also test it on Smear Slides Cropped 8 Classes. The con-

fusion matrix obtained is shown in Figure 6.3. The Precision, Recall and F1-score

obtained by testing on PBC Cropped dataset are 94.78 %, 94.77 % and 94.79
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Figure 6.3: Confusion matrix obtained by training the fine-tuned model on PBC 8
DA dataset, evaluating on the test dataset and also evaluating on the Smear Slides
8 DA dataset without data augmentation.

%, which is a bit less, due to the crowding of confusing classes which were not con-

centrated on 8 super classes, hence decreasing the evaluation metrics. Similarly, the

Precision, Recall and F1-score obtained by testing on Smear Slides Cropped dataset

are 4.47 %, 21.29 % and 7.45 % which is very less, since there is a domain shift

in the dataset, even though it might have same classes.

6.3.2 Xception Trained on Smear Slides Cropped 8 Clases

DA and testing on PBC cropped DA 8 classes

Here, we train and fine-tune Xception model on Smear Slides Cropped 8 Classes,

test on the same dataset and also test it on PBC cropped dataset with 8 classes.

The confusion matrix obtained is shown in Figure 6.4. The Precision, Recall and

F1-score obtained by testing on Smear Slides Cropped dataset are 82.64 %, 82.25

%, and 81.74 %, which is a better on the other hand, due to less crowding of

confusing classes which were not concentrated on 10 classes, hence increasing the

evaluation metrics a bit. Similarly, the Precision, Recall and F1-score obtained by

testing on PBC cropped dataset with 8 classes are 53.34 %, 24.36 % and 28.29

% which is better than the previous result when we were evaluating Smear Slides

dataset by training on PBC 8 DA Cropped dataset. This is probably due to the

fact that the Smear Slides dataset have more context rich features which can help
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Figure 6.4: Confusion matrix obtained by training the fine-tuned model on Smear
Slides 8 dataset, evaluating on the test dataset and also evaluating on the PBC 8
DA dataset without data augmentation.

to generalize the other dataset better.

6.3.3 Combining both the datasets and their common classes

using Xception Model

By Combining both the datasets, i.e., common classes and fine tuning the Xception

model, we get a Precision of 92.41 %, Recall of 92.16 % and F1-score of 92.19

%. The confusion matrix obtained by the experiment is shown in Figure 6.5. It

looks pretty good, since the model learns to generalize the datasets by treating it as

one dataset. This is different from performing domain adaptation since we are just

merging the datasets without learning the proper distribution of the data, in this

case, it might not generalize well for those samples which were unseen.

6.4 Domain Adaptation - Model and Formulation

Let us consider data samples x ∈ X. Here, X is some input space, and y ∈ Y

are certain labels output, from label space. There are two distribution, i.e., Source,

S(x, y) and Target, T (x, y), both are complex and unknown. Here, S is shifted from

target distribution T by some domain shift. The goal is to able to predict y, given
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Figure 6.5: Confusion matrix obtained by training the fine-tuned model on mixing
Smear Slides 8 dataset and PBC 8 DA Cropped dataset, and evaluating on the test
dataset without data augmentation.

input x for the target distribution. During training we have access to large number

of training samples {x1, x2, ...xN} from both the Source and Target distribution.

Here, we have an extra parameter, i.e., domain d

di =

0, if xi ∈ Source domain, yi ∈ Y are known

1, if xi ∈ Target domain, yi ∈ Y are necessarily not known

The task is to predict target domain’s input samples in test time. A feed for-

ward neural network architecture may be used to predict y ∈ Y , and its domain

label di ∈ {0, 1}. A D dimensional feature vector (f ∈ RD) is acquired by passing

the input x through Gf , which is also a Convolutional Deep Neural architecture for

feature extraction.

During the training, we aim to minimize the label prediction loss on the anno-

tated part, i.e., source part, of the training set and hence both the label predictor

and feature extractor are thus optimized, in order to minimize the empirical loss of

source domain samples. This ensures the discriminativeness of the features f , and

the overall good prediction performance of the combination of feature extractor and

label predictor on the source domain.
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Figure 6.6: The Domain Adaptation model by passing input images from two differ-
ent domains in random order. The feature extractor is taken from the best perform-
ing model for classification, and for both the cases, it is the Xception model. The
features (f) are passed to the label predictor (which predicts the classes of the data)
and the domain classifier (which predicts the domain of the data). The domain
classifier tends to get more confused over time, while the label predictor gets better
over time, which helps to learn domain invariant features.

We want to make the two features f domain invariant at the same time, i.e., make

the distributions, S(f) = {Gf (x; θf )|x ∈ S(x)} and T (f) = {Gf (x; θf )|x ∈ T (x)}
to be as close to each other. This will make the label predictor accuracy on the

target domain to be same as source domain according to the co-variate shift as-

sumption. Measuring the dissimilarity of distributions are non-trivial, given f is

high-dimensional and the distribution themselves are constantly changing as learn-

ing progresses.

The loss of the Domain Classifier is maximized at the training time in order to

obtain domain invariant features θf . We minimize the loss for label predictor and

maximize the loss for the domain classifier.
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E(θf , θy, θd) =
∑

i=1..N
di=0

Ly

(
Gy(Gf (xi; θf ); θy), yi

)
−

λ
∑

i=1..N

Ld

(
Gd(Gf (xi; θf ); θd), yi

)
=

=
∑

i=1..N
di=0

Li
y(θf , θy)− λ

∑
i=1..N

Li
d(θf , θd) (6.1)

Here, since the label predictor Ly(., .) is a classifier, hence the loss is multinomial.

Similarly, Ld(., .), the domain classifier loss is logistic. Li
y and Li

d are the correspond-

ing loss functions that are evaluated at the ith training example. In, general we are

seeking the parameters θ̂f , θ̂y, θ̂d that deliver a saddle point of the function :

(θ̂f , θ̂y) = argmin
θf ,θy

E(θf , θy, θ̂d) (6.2)

θ̂d = argmax
θd

E(θ̂f , θ̂y, θd) . (6.3)

At the saddle point, θd of the domain classifier minimize the domain classification

loss, while the parameters θy minimize the label predictor loss. The features learnt

by the label predictor are discriminative while maximizing the domain classification

loss learning domain invariant features. The overall architecture of this process can

be seen in Figure 6.6.

Standard optimizer such as Stochastic Gradient Descent can be used as optimizer.

The stationary saddle point is a part of the following stochastic updates, where µ

may be considered as the learning rate, which may vary over time:

θf ←− θf − µ

(
∂Li

y

∂θf
− λ

∂Li
d

∂θf

)
(6.4)

θy ←− θy − µ
∂Li

y

∂θy
(6.5)

θd ←− θd − µ
∂Li

d

∂θd
(6.6)
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The reduction in 6.4 can be achieved by introducing a special Gradient Reversal

Layer (GRL) as shown in Figure 6.6. Here, λ is a meta parameter which is not up-

dated by back-propagation. During forward propagation Gradient Reversal Layer

(GRL) acts as an identity transform, during back propagation, GRL takes the gra-

dient from the subsequent level, multiplies it by -λ and passes it to the preceding

layer. GRL is inserted between the feature extractor and the domain classifier, as

shown in Figure 6.6. Hence the total loss can be formulated as 6.7

Ẽ(θf , θy, θd) =
∑

i=1..N
di=0

Ly

(
Gy(Gf (xi; θf ); θy), yi

)
+

∑
i=1..N

Ld

(
Gd(Rλ(Gf (xi; θf )); θd), yi

)
(6.7)

After learning the label predictor, y(x) = Gy(Gf (x; θf ); θy) can be used to predict

inputs from both the domains.

6.5 Domain Adaptation using Xception Model

Since we have about 13050 images in total from PBC Cropped 8 Classes DA dataset,

and about 544 images from the 8 classes, so we need to do data augmentation for

performing Domain Adaptation for both the classes.

6.5.1 Augmenting the Smear Slides Cropped 8 Classes Data

Since medical images are prospected under heavy constraints 2, so there is very lit-

tle noise and variances in the data. There are various types of augmentations that

could be applied to images, firstly, we could apply some background to the images,

since the PBC Cropped dataset have some amount of background in them. The

background could also be of stain, since some slide images are cluttered in stain,

which could be mistaken as a part of the cell. The textures that were similar were

taken as background for heavy data augmentation as shown in Figure 6.8. After

applying background, we could zoom out the image a bit, from 0.5 to 1, which is

got by a random vector. The images could also flip, i.e., horizontally, vertically, and

2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104701/
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both with a probability
1

3
. We have also applied color transformation i.e., cooling

and heating effect on the image which suits the color of images present in the slide.

The cooler represents a more purple stain while the hotter version represents a more

yellowish stain. The color transformation is applied with a probability of
1

6
.

Applying repetitive Gaussian blur, we can fade the image, which can simulate out

of focus objects, which is not so common in medical images, but we still want them

to be robust to those perturbations. We can also rotate an image to a certain angle

with a probability of
1

4
in the range [0,90], [90,180], [100,270] and [270,360]. We did

also change the contrast and brightness. All the above mentioned augmentations

are shown in Figure 6.7, and they are applied to a single image in the illustration.

Augmentation is necessary in performing Domain Adaptation, since, we need

to have same number of data samples from each of the classes while training. A

sample of image is applied to a series of random augmentations with a vector of size

11 for example (1,0,1,1,1,1,0,0,1,0,1), where each of the values decides whether an

augmentation will happen (1) or not (0). A series of data augmentations can be

shown in Figure 6.9.

6.6 Domain Adaptation Source : Smear and Tar-

get : PBC Cropped

This is performing unsupervised domain adaptation on smear slides as source and

PBC slides as target. This generally means that with the help of Smear’s label data

we will be learning the distribution to classify the PBC’s data. We get a Precision,

Recall and F1-score at the test dataset 86.71 %, 85.67 % and 84.89 % respectively

at the Smear Test dataset. This is a bit more than doing the normal classification,

on the 8 classes using the Xception model. This is hapenning basically due to the

fact that the model is able to learn the distribution somehow and approximating

on the unseen distribution of the multinomial multivariate data distribution, by in-

cluding extra information from both the datasets. The confusion metrics obtained

can be shown in Figure 6.10, and the graph of loss and accuracy of the source and

domains are shown in Figure 6.11.
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Figure 6.7: Augmentations applied on a single image of Monocyte cell. From top left:
(1) Monocyte Cell, (2-9) Applying background on the cell, (10) Image with maximum
brightness, (11-16) Applying different color variant to the image, (17) Image with
maximum contrast, (18-20) different flips, (21-23) Gaussian blur repetitive with
kernel sizes 5,11,17, (24-27) Rotating images, (28) Salt and Pepper noise, (29-36)
Applying stain background, (37) Maximum zoom out of image. The transformations
are applied to the original image, and in the augmentation module, these are applied
recursively on a single image at random.
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Figure 6.8: Top: Textures of normal background images, Bottom: Textures of stain
background.

Figure 6.9: Series of random augmentations applied to a cell in the top left recur-
sively. These types of augmentation are common while creating the training set of
the Domain Adaptation pipeline.

74



lym
ph

oc
yte

mo
no

cy
te

my
elo

cy
te

ne
ut
rop

hil

pr
om

ye
loc

yte

me
tam

ye
loc

yte

ba
so
ph

il

eo
sin

op
hil

Predicted

lymphocyte

monocyte

myelocyte

neutrophil

promyelocyte

metamyelocyte

basophil

eosinophil

Ac
tu
al

99.2%
237/239

0.8%
2

1.1%
3

96.6%
256/265

0.8%
2

0.4%
1

0.8%
2

0.4%
1

0.4%
1

72.4%
173/239

0.4%
1

11.3%
27

14.6%
35

0.8%
2

97.1%
637/656

2.9%
19

37.2%
48

58.9%
76/129

3.1%
4

0.8%
1

0.5%
1

15.7%
31

4.0%
8

79.8%
158/198

0.4%
1

0.4%
1

0.8%
2

2.1%
5

0.4%
1

0.8%
2

94.6%
226/239

0.4%
1

100.0%
644/644

0

100

200

300

400

500

600

lym
ph

oc
yte

mo
no

cy
te

my
elo

cy
te

ne
ut
rop

hil

pr
om

ye
loc

yte

me
tam

ye
loc

yte

ba
so
ph

il

eo
sin

op
hil

Predicted

lymphocyte

monocyte

myelocyte

neutrophil

promyelocyte

metamyelocyte

basophil

eosinophil

Ac
tu
al

99.0%
295/298

0.7%
2

0.3%
1

97.3%
254/261

0.4%
1

0.8%
2

1.5%
4

96.3%
448/465

2.6%
12

0.9%
4

0.2%
1

0.7%
4

98.8%
586/593

0.5%
3

1.1%
3

0.7%
2

6.7%
18

0.4%
1

91.1%
245/269

0.6%
1

1.8%
3

7.9%
13

89.6%
147/164

0.7%
1

0.7%
1

98.5%
133/135

0.2%
1

99.8%
492/493

0

100

200

300

400

500

Figure 6.10: Confusion matrix by performing domain adaptation on Source as Smear
and Target as PBC dataset. (Left: Smear, Right: PBC)

The Precision, Recall and F1-score obtained by testing on PBC Cropped dataset

are 93.11 %, 93.21 % and 93.37 %. This is a bit lower because we are learning

features from Smear dataset, to classify PBC cropped dataset in unsupervised way,

which is lowering the metrics.

6.7 Domain Adaptation Source : PBC and Target

: Smear

Here, by training on the PBC data, we get to train unlabeled Smear data. The

Precision, Recall and F1-score at the test dataset for PBC 8 Cropped 95.64 %,

95.77 % and 95.89 % respectively. This is the highest metrics obtained on the

8 Cropped datasets, since the learning of extra features helps in classifying better

for the PBC 8 Cropped dataset. Similarly, when tested on Smear Slides 8 Cropped

dataset, we get a Precision, Recall and F1-score of 78.89 %, 78.31 % and 77.11 %,

which is lesser since, the features are learned in an unsupervised way. The confusion

metrics are shown in Figure 6.12 and the graph of training for domain adaptation

is shown in Figure 6.13.
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Figure 6.11: Top: Accuracy of Source Domain Images, and Bottom: Losses of Source
Classifier (Categorical Crossentropy), Related Feature Extractor and Domain Loss
(Binary Crossentropy).
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Figure 6.12: Confusion matrix by performing domain adaptation on Source as PBC
and Target as Smear dataset. (Left: PBC, Right: Smear)
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Figure 6.13: Top: Accuracy of Source Domain Images, and Bottom: Losses of Source
Classifier (Categorical Crossentropy), related Feature Extractor and Domain Loss
(Binary Crossentropy).
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6.8 Results Summary for the Cropped Common

Classes Dataset

The best results is obtained when we are performing domain adaptation to learn the

extra features which was not learnt before as shown in Table 6.1. We will be using

this model to classify the 8 common classes after classifying from the final model.

The full pipeline is shown in Figure 6.14, which comprises of the Mask RCNN part,

the classifier part and the Domain Adaptation module. The Mask RCNN part

extracts the exact mask of the cells, the classifier part detects which class the cells

belong to for all the 10 classes, and the domain adaptation module refines the classes

for 8 class detection.

The final results of the test dataset is shown in Figure 6.15 and Figure 6.15. The

general distribution of smear slides remains cluttered and mixed classes all together,

which can be seen in Figure 6.17 and Figure 6.17. The upper part of the bounding

box has the class detection of Mask RCNN and the lower part has the detection by

Domain Adaptation pipeline. These two combinations can give almost near accurate

results for the classes of cells detected. Of course, more data will help.
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Remarks Precision (in %) Recall (in %) F1-score (in %)
Trained on PBC
8 Cropped

94.78 94.77 94.79

Above model when
used to classify
Smear Slides 8
Cropped

4.47 21.29 7.45

Trained on Smear
Slides 8 Cropped

82.64 82.25 81.74

Above model when
used to classify
PBC 8 Cropped

53.34 24.36 28.29

Model trained on mixed
and classifying PBC 8
Cropped

95.21 95.45 95.37

Model trained on mixed
and classifying Smear
Slides 8 Cropped

83.98 83.73 84.34

Domain Adaptation
Source: PBC Cropped
Target: Smear Slides 8
Cropped, Testing on
Smear Slides Cropped

78.89 78.31 77.11

Domain Adaptation
Source: PBC Cropped
Target: Smear Slides 8
Cropped, Testing on
PBC 8 Cropped

95.64 95.77 95.89

Domain Adaptation
Source: Smear Slides
Cropped
Target: PBC 8 Cropped,
Testing on Smear
Slides 8 Cropped

86.71 85.67 84.89

Domain Adaptation
Source: Smear Slides 8
Cropped
Target: PBC 8 Cropped,
Testing on PBC 8
Cropped

93.11 93.21 93.37

Table 6.1: The final results summarized for the 8 Common Classes dataset, and
fine-tuning on Xception model using a learning rate of 1e-04 and Adam Optimizer.
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Figure 6.14: Full pipeline including Mask RCNN, Classifier and Domain Adaptation
module for accuractely segmenting and classifying cells.
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Figure 6.15: The results of test dataset with domain adaptation pipeline.
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Figure 6.16: The results of test dataset with domain adaptation pipeline.
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Figure 6.17: The results of unseen mixed classes with domain adaptation pipeline.
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Figure 6.18: The results of unseen mixed classes with domain adaptation pipeline.
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Chapter 7

Conclusions

In this study we build a pipeline for automated masking of Peripheral Blood Smear

images which can detect and segment regions of interest comprising of white blood

cells using Mask RCNN. This method will help to create and hasten the creation

of a novel blood smear dataset according to Kolkata’s demography. Since collection

and annotation of data is an expensive process, for the time being we have used very

limited data for our particular task. Using domain adaptation, the improvement

in various metrics have been reported. The convolution backbone of the Domain

Adaptation pipeline has been selected from the state-of-the-art models which per-

formed best in both PBC cropped and Smear Slides Cropped datasets.

Having surpassed the state of the art as reported in PBC paper, we present a

novel contribution in classification of the data, which concludes that a cell is identi-

fied more accurately when we have neighbors. When the dataset was in the verge of

making, we have tried various experimental methods for masking and detection, such

as our own novel GRAD-CAM based detection, which can be improved furthermore

using attention-based mechanisms. Having experimented our own classical methods,

we can perform satisfactory jobs when the data is less and we need to create our

own masking methods. We have also created a novel PBC cropped dataset which

goes hand to hand with domain adaptation.

Future scope lies in generating real like images using Generative Adversarial

Neural Networks. This can be done only when we have sufficient data for the task.

Another area of research which can be explored is inventing a novel algorithm for
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color transfer, which can convert PBC 8 dataset at ease to Smear Slides Cropped 8

dataset. This will help to create similar dataset or transform a dataset to a target

domain by learning features from both the domains. This will be significantly dif-

ferent from Neural Style Transfer and other known algorithms.

In conclusion we can say that this work will be deployable in real world scenario

only when we get more data which helps in more precise masking and helping to

understand the cells better. This will help doctors and practitioners to automate

their daily job of counting and reporting blood smear statistics for blood test. Having

done relatively good job in classifying and detecting cells, this knowledge can be used

to actively create a better dataset.
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Appendix A

Evaluation Metrics

In this work the following evaluation metrics were used:

• True Positive (TP)

• True Negative (TN)

• False Positive (FP)

• False Negative (FN)

• Accuracy (AC) =
TP + TN

TP + TN + FP + FN

• Recall or Sensitivity (SE) =
TP

TP + FN

• Precision (PC) =
TP

TP + FP

• F1-Score =
2× (PC × SE)

PC + SE

The following Loss Function were used:

Binary Cross-Entropy, which can be written as :

Ly′(y) := −
1

N

N∑
i=1

(y′i log(yi) + (1− y′i) log(1− yi))

Where, yi is the predicted class , y′i is the original class value. (log = ln, natural log)
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Categorical Cross-Entropy, which can be written as :

Ly(y
′) := − 1

N

(
N∑
i=1

y′i · log(yi)

)
Where yi is the predicted class, and y′i is the true value of a label predicted,

generally in one-hot-encoded form.
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lar. Recognition of peripheral blood cell images using convolutional neural net-

works. Computer Methods and Programs in Biomedicine, 180:105020, 2019.

[4] Serge Beucher. Watershed, hierarchical segmentation and waterfall algorithm.

In Jean Serra and Pierre Soille, editors, Proceedings of the 2nd International

Symposium on Mathematical Morphology and Its Applications to Image Process-

ing, ISMM 1994, Fontainebleau, France, September 1994, volume 2 of Compu-

tational Imaging and Vision, pages 69–76. Kluwer, 1994.

[5] François Chollet. Xception: Deep learning with depthwise separable convolu-

tions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1800–1807, 2017.

[6] Nazli Farajidavar. Transductive transfer learning for computer vision., 2015.

[7] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by

backpropagation. In Proceedings of the 32nd International Conference on In-

ternational Conference on Machine Learning - Volume 37, ICML’15, page

1180–1189. JMLR.org, 2015.

[8] Hao Guan and Mingxia Liu. Domain adaptation for medical image analysis: A

survey, 2021.

89

https://github.com/matterport/Mask_RCNN


[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

In 2017 IEEE International Conference on Computer Vision (ICCV), pages

2980–2988, 2017.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 770–778, 2016.

[11] Han-Kai Hsu, Wei-Chih Hung, Hung-Yu Tseng, Chun-Han Yao, Yi-Hsuan Tsai,

Maneesh Singh, and Ming-Hsuan Yang. Progressive domain adaptation for

object detection. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops, June 2019.

[12] Genta Ishikawa, Rong Xu, Jun Ohya, and Hiroyasu Iwata. Detecting a fetus

in ultrasound images using grad CAM and locating the fetus in the uterus.

In Maria De Marsico, Gabriella Sanniti di Baja, and Ana L. N. Fred, editors,

Proceedings of the 8th International Conference on Pattern Recognition Appli-

cations and Methods, ICPRAM 2019, Prague, Czech Republic, February 19-21,

2019, pages 181–189. SciTePress, 2019.

[13] I. T. Jolliffe. Principal Component Analysis and Factor Analysis, pages 115–

128. Springer New York, New York, NY, 1986.

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common

objects in context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne

Tuytelaars, editors, Computer Vision – ECCV 2014, pages 740–755, Cham,

2014. Springer International Publishing.

[15] Michael Linden, Jerrold M. Ward, and Sindhu Cherian. Hematopoietic and

Lymphoid Tissues, pages 309–338. Elsevier Inc., 2012. Copyright: Copyright

2013 Elsevier B.V., All rights reserved.

[16] Shuying Liu and Weihong Deng. Very deep convolutional neural network based

image classification using small training sample size. In 2015 3rd IAPR Asian

Conference on Pattern Recognition (ACPR), pages 730–734, 2015.

[17] Zak Murez, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi, and Kyung-

nam Kim. Image to image translation for domain adaptation. In 2018

90



IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

4500–4509, 2018.

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 39(6):1137–1149, 2017.

[19] H. Robbins. A stochastic approximation method. Annals of Mathematical

Statistics, 22:400–407, 2007.

[20] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna

Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations

from deep networks via gradient-based localization. In 2017 IEEE Interna-

tional Conference on Computer Vision (ICCV), pages 618–626, 2017.

[21] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-

v4, inception-resnet and the impact of residual connections on learning, 2016.

[22] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

2818–2826, 2016.

[23] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial dis-

criminative domain adaptation. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2962–2971, 2017.

[24] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9(86):2579–2605, 2008.

[25] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolu-

tional networks. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne

Tuytelaars, editors, Computer Vision – ECCV 2014, pages 818–833, Cham,

2014. Springer International Publishing.

[26] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning

transferable architectures for scalable image recognition. In 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 8697–8710,

2018.

91



92



Department of Computer Science
Ramakrishna Mission Vivekananda Educational and Research Institute
Kolkata - 711202, India


	Introduction
	Datasets
	PBC_dataset_normal_DIB
	PBC_dataset_normal_DIB_cropped
	Peripheral Blood Smear Slides and Smear Slides Cropped

	Experimental Methods for Masking
	Watershed Algorithm
	DoH (Difference of Hessian), DoG (Difference of Gaussian) and LoG (Laplacian of Gaussian)
	GRAD CAM based novel method for masking 

	Classification
	Classification models applied on PBC datasets
	Classification models applied on Smear Slides Cropped datasets

	Mask RCNN
	What is Instance segmentation?
	Training Mask RCNN - Initial Configurations
	Results of Mask RCNN on Test Dataset
	Results of Mask RCNN on Mixed Unseen (without GT) images
	Future Scope - Automated Masking of Smear Slides Dataset

	Domain Adaptation
	Domain Adaptation as a part of Transfer Learning 
	Domain Adaptation Pipeline
	Experiments on the common classes
	Xception Trained on PBC cropped DA 8 classes and testing on Smear Slides Cropped 8 Clases DA
	Xception Trained on Smear Slides Cropped 8 Clases DA and testing on PBC cropped DA 8 classes
	Combining both the datasets and their common classes using Xception Model

	Domain Adaptation - Model and Formulation
	Domain Adaptation using Xception Model
	Augmenting the Smear Slides Cropped 8 Classes Data

	Domain Adaptation Source : Smear and Target : PBC Cropped
	Domain Adaptation Source : PBC and Target : Smear
	Results Summary for the Cropped Common Classes Dataset

	Conclusions
	Evaluation Metrics

