Solving the Cold Start problem in Recommendation Systems Case Study on MovieLens Dataset

Prateek Chanda (22D0362), Sandarbh Yadav (22D0374), Jimut Bahan Pal (22D1594) & Goda Nagakalyani (214050010)

under the guidance of Prof. Preethi Jyothi

CS725 - Foundations of Machine Learning

1 Introduction

2 Dataset

3 Methodology

4 Solving the Cold Start Problem

5 Results

Introduction

Recommendation systems form the basis of many applications like Netflix movie recommendations, Amazon product recommendations etc. In this project:

- A recommendation model, LightGCN [1], is built using GCN (SIGIR 2020).
- A novel variant of original model, *LightGCN*++, is proposed.
- Comparison of performance is done with traditional and state of the art models.

- ロト - (四ト - 三ト - 三ト

Motivation

- Traditional methods make recommendations based on the rating history of user.
- However, this approach faces issues when dealing with new users. This problem of making recommendations to users without rating history is referred as **cold start**.
- Collaborative Filtering based methods which use the notion of K-nearest neighbours face problems when dealing with non rich nodes.
- LightGCN captures the user-item interactions as a bipartite graph.

Introduction

2 Dataset

3 Methodology

4 Solving the Cold Start Problem

5 Results

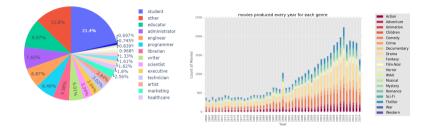
MovieLens Dataset

- MovieLens is a popular benchmark dataset for recommendation systems.
- It contains data about movies, users and ratings (on a scale of 1 to 5).

Movie ID	Title	Genres		
1	Toy Story (1995)	Animation Children's Comedy		
2	Jumanji (1995)	Adventure Children's Fantasy		
3	Grumpier Old Men (1995)	Comedy Romance		
:	:	:		

User ID	Gender	Age	Occupation	ZIP Code	User ID	Movie ID	Rating	Timestamp
1	F	19	10	48067	1	1193	5	978300760
2	М	56	16	70072	1	661	3	978302109
3	М	25	15	55117	1	914	3	978301968
:	:	:	:	:	:	:	:	:

User Profile Distribution based on Occupation



Two variants of MovieLens dataset are used:

- MovieLens 100K : 100,000 ratings from 1000 users on 1700 movies
- MovieLens 1M : 1,000,000 ratings from 6000 users on 4000 movies

イロト イボト イヨト イヨト

1 Introduction

2 Dataset

3 Methodology

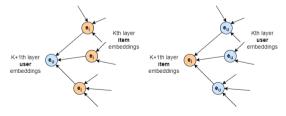
4 Solving the Cold Start Problem

5 Results

Graph Convolution Neural Networks

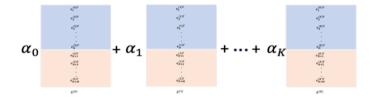
- LightGCN is based on Graph Convolution Neural Networks (GCN) which captures the structural information present in the bipartite graph. It simplifies the overall propagation rule by removing non-linearity.
- Embeddings are computed via message aggregation using the following equations:

$$e_u^{k+1} = \sum_{i \in N_u} \frac{1}{\sqrt{|N_u|}\sqrt{|N_i|}} e_i^k \quad \text{and} \quad e_i^{k+1} = \sum_{i \in N_u} \frac{1}{\sqrt{|N_u|}\sqrt{|N_i|}} e_u^k$$
 (1)



Weighted Embeddings Average

• For computing the final embedding, the model considers a weighted average with equal weights to all the previous layers.

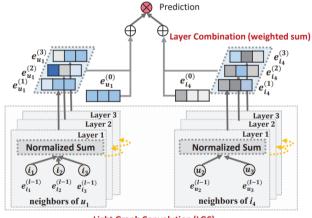


• The final embeddings are computed as follows for $\alpha_k = \frac{1}{K+1}$:

$$\mathbf{e}_{\mathbf{u}} = \sum_{k=0}^{K} \alpha_k \mathbf{e}_{\mathbf{u}}^{(\mathbf{k})} \quad \text{and} \quad \mathbf{e}_{\mathbf{i}} = \sum_{k=0}^{K} \alpha_k \mathbf{e}_{\mathbf{i}}^{(\mathbf{k})}$$
(2)

< □ > < 団 > < 三 > < 三 > < 三 > < 三 > ○ へ () 10/27

Model Architecture



Light Graph Convolution (LGC)

Loss Function

• To evaluate our recommendation system, the scores are computed using the final embeddings of user and items as follows:

$$\hat{y}_{ui} = e_u^T e_i \tag{3}$$

• Bayesian Personalized Loss (*BPR*) loss is a popular loss function in recommendation systems. It gives higher preference to observed user-item predictions compared to the unobserved ones. BPR loss is used in this project.

$$\mathcal{L}_{\mathcal{BPR}} = -\sum_{u=1}^{M} \sum_{i \in N_u} \sum_{j \notin N_u} \ln\sigma(\hat{y_{ui}} - \hat{y_{uj}}) + \lambda ||E^{(0)}||^2$$
(4)

• The problem reduces to minimizing the BPR loss and training the model. *Adam Optimizer* is used on top of Gradient Descent.

The scores computed at the output layer are used to determine the top K scoring movies for each user. Following evaluation metrics are used in the project:

- MAP: Mean Average Precision
- **Top-K Precision:** It denotes the fraction of K recommended movies that are liked by the user.
- **Top-K Recall:** It denotes the fraction of relevant movies that are recommended to the user in K movie recommendations.
- Normalized Discounted Cumulative Gain (NDCG): It considers the ordering of retrieved responses from the recommendation. It is widely used in recommendation systems.

$$nDCG_p = \frac{DCG_p}{IDCG_p}$$

(5)

- *LightGCN*++ is the proposed novel modification.
- For the final embedding computation, instead of equal weightage to each layer, more weightage is given to later layers.
- This is achieved by multiplying layer embeddings by α ε (0,1) such that the initial layer embedding is multiplied K + 1 times by α and the last layer is multiplied only once by α.
- Thus, more weightage is given to the last layer embedding.

$$\mathbf{e}_{\mathbf{u}} = \sum_{k=0}^{K} \alpha^{K-k+1} \mathbf{e}_{\mathbf{u}}^{(\mathbf{k})} \quad \text{and} \quad \mathbf{e}_{\mathbf{i}} = \sum_{k=0}^{K} \alpha^{K-k+1} \mathbf{e}_{\mathbf{i}}^{(\mathbf{k})}$$
(6)

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q (C) 14/27

Introduction

2 Dataset

3 Methodology

4 Solving the Cold Start Problem

5 Results

- Given a new user with no past rating history, the embedding vector is computed for that user using its profile features.
- Next, we compute the scores of this embedding with all the movies and correspondingly recommend the K movies with highest scores.

Introduction

2 Dataset

3 Methodology

4 Solving the Cold Start Problem

5 Results

Data is split into training, validation and test sets in 70:15:15 split ratio for both the 100K and 1M datasets. Following hyperparameter values are used:

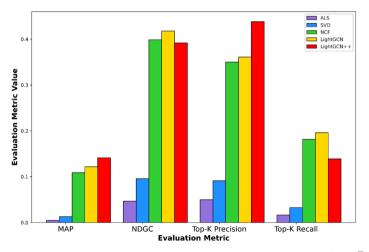
Hyperparameter	Value
Embedding size	64
Number of layers	3
Learning rate	0.005
Batch size	1024
Number of epochs	100
Regularization parameter	0.0001
Top K recommendations	10

Comparison is done with following baselines on the evaluation metrics discussed before:

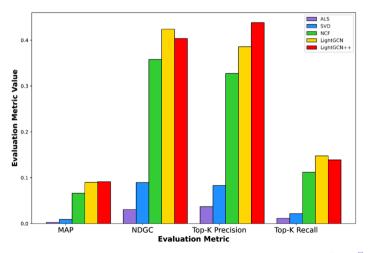
- Alternative Least Squares [2] : It is a matrix factorization technique which minimizes two loss functions alternatively. Firstly, it fixes the user matrix and runs gradient descent using item matrix with L2 regularization and vice versa.
- Singular Value Decomposition [3] : This approach partitions the utility matrix A into 3 matrices: U orthogonal left singular matrix, S diagonal matrix, V diagonal right singular matrix.
- Neural Collaborative Filtering [4] : It uses Feed Forward Neural Network to train a model for recommending items to users.

Data	Algorithm	MAP	NDGC	Top-K Precision	Top-K Recall
100K	ALS	0.004697	0.046619	0.049629	0.016688
100K	SVD	0.012873	0.095930	0.091198	0.032783
100K	NCF	0.108609	0.398754	0.349735	0.181576
100K	LightGCN	0.121633	0.417629	0.360976	0.196052
100K	$LightGCN{++}$	0.141294	0.391641	0.43819	0.138974
1M	ALS	0.002683	0.030447	0.036707	0.011461
1M	SVD	0.008828	0.089320	0.082856	0.021582
1M	NCF	0.065931	0.357964	0.327249	0.111665
1M	LightGCN	0.089775	0.423900	0.385721	0.147728
1M	$LightGCN{++}$	0.091297	0.403426	0.47371	0.138974

Results for MovieLens 100K dataset



Results for MovieLens 1M dataset



Introduction

2 Dataset

3 Methodology

4 Solving the Cold Start Problem

5 Results

- In this project, we have implemented *LightGCN* on 2 variants of MovieLens datasets using TensorFlow.
- We have proposed a novel variant of the original model, *LightGCN*++.
- We have compared the performance of *LightGCN* and *LightGCN*++ with 3 baselines (ALS, SVD & NCF) on 4 evaluation metrics (MAP, NDGC, Top-K Precision & Top-K Recall) and promising results are obtained.
- Cold start problem is also addressed.
- Demo of LightGCN working built on Gradio, deployed on Huggingface.
- Future Work: Here we are using order invariant convolutions for neighbor aggregration, can we use permutation based convolutions if they give better results?
- Code repository: GitHub
- Gradio: Dataset Analysis Top K Recommendations

Contributions

- Problem Statement Formulation: Sandarbh
- Literature Review: Jimut
- Dataset Exploration: Sandarbh
- LightGCN Implementation: Prateek
- LightGCN++ Implementation: Prateek
- Diagrams: Nagakalyani
- Evaluation Metrics: Prateek
- Baselines Implementation: Jimut
- Experiments: Sandarbh
- Plots: Nagakalyani
- Gradio: Prateek
- Presentation: Sandarbh
- Report: Nagakalyani

References

- X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, "Lightgcn: Simplifying and powering graph convolution network for recommendation," in *Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval*, pp. 639–648, 2020.
- Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, "Large-scale parallel collaborative filtering for the netflix prize," in *International conference on algorithmic applications in management*, pp. 337–348, Springer, 2008.
- X. Zhou, J. He, G. Huang, and Y. Zhang, "Svd-based incremental approaches for recommender systems," *Journal of Computer and System Sciences*, vol. 81, no. 4, pp. 717–733, 2015.
- X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, "Neural collaborative filtering," in *Proceedings of the 26th international conference on world wide web*, pp. 173–182, 2017.

Thank You

27 / 27