
Solving the Cold Start problem in Recommendation Systems -

Case Study on MovieLens Dataset

Prateek Chanda (22D0362)1, Sandarbh Yadav (22D0374)1, Jimut Bahan Pal
(22D1594)2, and Goda Nagakalyani (21405001)1

1Department of Computer Science and Engineering, IIT Bombay
2Centre for Machine Intelligence and Data Science, IIT Bombay

November 2022

1 Introduction

Recommendation systems form the basis of many applications like Netflix movie recommendations,
Amazon product recommendations etc. A recommendation model is built that can be used in a
production setting for suitably recommending items (movies) to users and resulting in better user
experience and user engagement. The project is based on a model proposed by a recent paper using
Graph Convolution Neural Network (LightGCN). [1] A variation of original model, LightGCN++,
is also proposed. Comparison of performance is done with traditional collaborative-based filtering
like matrix factorization and state-of-the-art models like Alternative Least Squares (ALS). [2]

Figure 1: Recommendations are made based on the ratings provided by the users

2 Literature Review

Collaborative Filtering is a popular technique in modern recommendation systems. It parameterizes
users and items as embeddings and learns the embedding parameters by reconstructing historical
user-item interactions. SVD based approaches [3] use the weighted average of ID embeddings of his-
torical items as the target user’s embedding. Another type of CF methods consider historical items
as the pre-existing features of a user, towards better user representations. Recent neural recommen-
dation models like Neural Collaborative Filtering NCF [4] use the same embedding component while
enhancing the interaction modeling with neural networks.

3 Motivation

Traditional methods make recommendations based on the rating history of user. However, this
approach faces issues when dealing with new users. This problem of making recommendations to
users without rating history is referred as cold start. Collaborative Filtering based methods which
use the notion of K-nearest neighbours face problems when dealing with non rich nodes. A non

1

rich node is one whose neighbours are quite far away from them and hence not representative of it.
LightGCN deals with this issue by capturing the user-item interactions as a bipartite graph.

Figure 2: LightGCN considers user-item interaction as a bipartite graph

4 Dataset

For this project, MovieLens dataset is used. It contains integer movie ratings on a scale of 1 to 5
along with corresponding user features and movie features. It is commonly used as a benchmark for
recommendation systems. Two variants of the dataset are used:

• Movielens 100K - It contains 100,000 ratings from 1000 users on 1700 movies. It was released
in April 1998.

• Movielens 1M - It contains one million ratings from 6000 users on 4000 movies. It was released
in February 2003.

Figure 3: MovieLens dataset contains data about movies, users and ratings

Figure 4: Distribution of users on the basis of age and movies on the basis of genres across years

2

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/1m/

5 Methodology

The graph neural network model proposed by the paper [1] is implemented. LightGCN captures
the structural information present in the bipartite graph.

5.1 Message Aggregation for computing embeddings

Embeddings are computed via message aggregation using the following equations:

ek+1
u =

∑
i∈Nu

1√
|Nu|

√
Ni

eki (1)

ek+1
i =

∑
i∈Nu

1√
|Nu|

√
Ni

eku (2)

Here, eku and eki denote the user and movie embedding at the k− th layer. |Nu| and |Ni| indicate
the number of neighbors of user and item (movie) nodes. All in all, the model LightGCN removes
any non-linearity, thereby simplifying the overall propagation rule. After K iterations over all the
nodes, the Kth layer embedding is denoted as E(K).

5.2 Weighted Embeddings Average

For computing the final embedding, the model considers a weighted average with equal weights to
all the previous layers. The following equations are used for calculation of final embedding:

eu =

K∑
k=0

αke
(k)
u (3)

ei =

K∑
k=0

αke
(k)
i (4)

Figure 5: Weighted average of all the previous layers for computation of final embedding

5.3 Model architecture

The model architecture diagram is given in figure 6.

3

Figure 6: LightGCN Model Architecture

5.4 Loss Function

To evaluate the recommendation system, scores are computed using the final embeddings of user
and items as follows:

ŷui = eTu ei (5)

For training the model, Bayesian Personalized Loss is used. BPR loss is very popular loss
function used for recommendation systems. It gives higher preference to the observed user-item
predictions compared to the unobserved ones.

LBPR = −
M∑
u=1

∑
i∈Nu

∑
j /∈Nu

lnσ(ŷui − ˆyuj) + λ||E(0)||2 (6)

where ŷui and ˆyuj are the predicted score of a positive sample and a negative sample respectively.
The loss function uses regularization as well just like standard Ridge regression.

5.5 Training the Model

The problem thus boils down to minimizing the BPR loss using standard optimization techniques
like Gradient Descent and training the model. In this project Adam Optimizer is used on top of
Gradient Descent.

5.6 Evaluation Metrics

The scores computed at the output layer are used to determine the top K scoring movies for each
user. Following evaluation metrics are used in the project:

• MAP: Mean Average Precision

• Top-K Precision : It denotes the fraction of K recommended movies that are liked by the user.

• Top-K Recall: It denotes the fraction of relevant movies that are recommended to the user in
the K movie recommendations.

• Normalized Discounted Cumulative Gain (NDCG)

4

NDCG is widely used in recommendation systems and information retrieval-based literature. It
takes into consideration the ordering of the retrieved responses from the recommendation. It takes
the ratio of Discounted Cumulative Gain (DCG) of the predicted recommended order to the ideal
order.

DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(7)

IDCGp =

|RELp|∑
i=1

2reli − 1

log2(i+ 1)
(8)

nDCGp =
DCGp

IDCGp
(9)

where p is a particular rank position, reli ∈ 0,1 is the graded relevance of the result at position
i and |REL|p is the list of items ordered by their relevance upto position p.

6 Algorithm

Algorithm 1: LightGCN

Input: MovieLens Dataset
Hyperparameters Dictionary

Output: Movie recommendations to users
Initialise the embeddings at 0th layer, i.e., e0u for all users and e0i for all items (movies);
for k = 1 to K do

Compute kth layer embeddings: eku for all users and eki for all items using Eqs. (1) & (2);
end
Combine the embeddings of k layers to determine the final embeddings eu for all users and
ei for all items using Eqs. (3) & (4);
Compute the scores from final user and item embeddings using Eq. (5);
Recommend the items (movies) with highest scores to the users;

7 Overall Pipeline from Input to Output

Figure 7: Model Pipeline Architecure for LightGCN

5

8 Proposed Novel Modification

LightGCN++ is the proposed novel modification. For the final embedding computation, instead of
equal weightage to each layer, more weightage is given to later layers. This is achieved by multiplying
layer embeddings by α ϵ (0,1) such that the initial layer embedding is multiplied K + 1 times by
α and the last layer is multiplied only once by α. Thus, more weightage is given to the last layer
embedding. The equations for computing final embedding get modified as follows:

eu =

K∑
k=0

αK−k+1e(k)u (10)

ei =

K∑
k=0

αK−k+1e
(k)
i (11)

9 Solving the Cold Start Problem

Given a new user with no past rating history, the embedding vector is computed for that user
using its profile features. Next, the scores of this embedding are computed with all the movies and
correspondingly the K movies with highest scores are recommended.

10 Results

Data is split into training, validation and test sets in 70:15:15 split ratio for both the 100K and 1M
datasets. Following hyperparameter values are used:

Hyperparameter Value
Embedding size 64
Number of layers 3
Learning rate 0.005
Batch size 1024

Number of epochs 100
Regularization parameter 0.0001
Top K recommendations 10

Table 1: Hyperparameter Values

Comparison is done with following baselines on the evaluation metrics discussed before:

• Alternative Least Squares [2] : It is a matrix factorization technique which minimizes two
loss functions alternatively. Firstly, it fixes the user matrix and runs gradient descent using
item matrix with L2 regularization and vice versa.

• Singular Value Decomposition [3] : This approach partitions the utility matrix A into 3
matrices: U - orthogonal left singular matrix, S - diagonal matrix, V - diagonal right singular
matrix.

• Neural Collaborative Filtering [4] : It uses Feed Forward Neural Network to train a model
for recommending items to users.

Results are summarized in table 2 and figure 8 and 9. It is observed that on evaluation metrics
like MAP and Top-K Precision, LightGCN++ performs better than all other algorithms while on
evaluation metrics like NDGC and Top-K Recall, LightGCN performs better than the rest. Similar
trend is observed for both the MovieLens 100K dataset and MovieLens 1M dataset.

6

Data Algorithm MAP NDGC Top-K Precision Top-K Recall
100K ALS 0.004697 0.046619 0.049629 0.016688
100K SVD 0.012873 0.095930 0.091198 0.032783
100K NCF 0.108609 0.398754 0.349735 0.181576
100K LightGCN 0.121633 0.417629 0.360976 0.196052
1M LightGCN++ 0.141294 0.391641 0.43819 0.138974
1M ALS 0.002683 0.030447 0.036707 0.011461
1M SVD 0.008828 0.089320 0.082856 0.021582
1M NCF 0.065931 0.357964 0.327249 0.111665
1M LightGCN 0.089775 0.423900 0.385721 0.147728
1M LightGCN++ 0.091297 0.403426 0.43819 0.138974

Table 2: Results

Figure 8: Results for MovieLens 100K dataset

Figure 9: Results for MovieLens 1M dataset

7

11 Conclusion & Future Work

In this project, we have implemented LightGCN on 2 variants of MovieLens datasets. We have pro-
posed a variant of original model, LightGCN++. We have compared the performance of LightGCN
and LightGCN++ with 3 baselines (ALS, SVD NCF) on 4 evaluation metrics (MAP, NDGC, Top-K
Precision Top-K Recall) and promising results are obtained. Cold start problem is also addressed.
Demo of LightGCN working is built on Gradio and deployed on Huggingface. Here we are using
order invariant convolutions for neighbor aggregration. Usage of permutation based convolutions
can be explored in future.

12 Code Repository & Gradio Links

Code Repository: GitHub
Gradio Demonstration: Dataset Analysis & Top K Recommendations
Gradio Implementation: Dataset Analysis Code & Top K Recommendations Code

References

[1] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn: Simplifying and powering
graph convolution network for recommendation,” in Proceedings of the 43rd International ACM
SIGIR conference on research and development in Information Retrieval, pp. 639–648, 2020.

[2] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel collaborative filtering
for the netflix prize,” in International conference on algorithmic applications in management,
pp. 337–348, Springer, 2008.

[3] X. Zhou, J. He, G. Huang, and Y. Zhang, “Svd-based incremental approaches for recommender
systems,” Journal of Computer and System Sciences, vol. 81, no. 4, pp. 717–733, 2015.

[4] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in
Proceedings of the 26th international conference on world wide web, pp. 173–182, 2017.

8

https://github.com/Jimut123/FML_Project
https://fmlprojectcs725-movielensdatasetanalysis.hf.space/
https://fmlprojectcs725-recommendationmovielens.hf.space/
https://huggingface.co/spaces/FMLProjectCS725/MovieLensDatasetAnalysis/tree/main
https://huggingface.co/spaces/FMLProjectCS725/recommendationMovieLens/tree/main

	Introduction
	Literature Review
	Motivation
	Dataset
	Methodology
	Message Aggregation for computing embeddings
	Weighted Embeddings Average
	Model architecture
	Loss Function
	Training the Model
	Evaluation Metrics

	Algorithm
	Overall Pipeline from Input to Output
	Proposed Novel Modification
	Solving the Cold Start Problem
	Results
	Conclusion & Future Work
	Code Repository & Gradio Links

