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Motivation: Generative models
using score functions



Score function

• Score: Removes the intractable normalizing constant.

• Train score-based models by minimizing the Fisher divergence.

Ep(x)[∥∇x log p(x)− sθ(x)∥22] (1)

• However we don’t know the data distribution, we can not
calculate the ground truth score directly.

• Score/Sliced Score Matching eliminates the data score using
integration by parts.

• Score matching objectives can be optimized with stochastic
gradient descent, analogous to the log-likelihood objective.
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Score based generative models
(discrete)



Langevin MCMC using estimated scores

After score matching, we can use Langevin dynamics to draw
samples[3]. Langevin dynamics accesses p(x) only through the score.

xi+1 ← xi + ϵ∇x log p(x) +
√
2ϵzi, i = 0, 1, . . . , K (2)

Figure 1: Score Matching with Langevin Dynamics (SMLD)[3]

[3]Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. 3



Langevin MCMC using estimated scores: Limitation

• Estimated score functions are inaccurate in low density regions
where few data points are available for computing the score
matching objective.

• Realistic data is often sparsely distributed, hence our initial
sample is highly likely to be in low density regions.

Figure 2: Pitfalls of Langevin MCMC: Score function[3]

[3]Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. 4



Langevin MCMC using estimated scores: Limitation

• Estimated score functions are inaccurate in low density regions
where few data points are available for computing the score
matching objective.

• Realistic data is often sparsely distributed, hence our initial
sample is highly likely to be in low density regions.

• Inaccurate score-based model will derail Langevin dynamics
from the very beginning.

• How to accurately estimate the score function in regions of low
data density?

[3]Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. 4



Score Matching with Langevin Dynamics (SMLD)

• Solution: Perturb the data points with noise and train
score-based models on the noisy data points.

• But how to choose the appropriate noise scale? Larger noise
over-corrupts the data and smaller noise does not cover low
density regions.

• Way forward: Introduce multiple scales of noise perturbations
simultaneously.

• Annealed Langevin Dynamics: Sample with langevin dynamics
using decreasing noise scales. This works well!
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Denoising Diffusion Probabilistic Model (DDPM)

• Forward noise is modeled by a directed chain graph (Bayesian
Network). DDPM attempts to learn the reverse process,
characterized by sθ(xi, i).

pθ(xi−1|xi) = N
(
xi−1;

1√
1− βi

(xi + βisθ(xi, i)), βiI
)

(3)

• After training, samples are generated by starting from
xN ∼ N (0, I) and sampling from the reverse bayesian network as
follows.

xi−1 =
1√
1− βi

(xi + βisθ(xi.i)) +
√

βizi, i = N,N− 1, . . . , 1 (4)

• Song et al.[4] call this method ancestral sampling, which is just
another term for the well known forward sampling method.

[4]Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative
modeling through stochastic differential equations. 6
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DDPM as a score based model

• The objective for training DDPM is as follows.

Ex0,ϵ
[

β2t
2σ2tαt(1− ᾱt)

∥∥∥ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)∥∥∥2] (5)

• Song et al.[4] re-interpreted the above objective using scores in
the following manner.

θ∗ = argmin
θ

N∑
i=1

σ2i Epdata(x)Epσi (x̃|x)
[
sθ(x̃, σi)−∇x̃ log pσi(x̃ | x)

2
2
]
.

(6)

[4]Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative
modeling through stochastic differential equations. 7



Score based SDE models
(continuous)



Motivation for Score based SDE models

• Limitation of DDPM: the reverse process requires N steps to
generate a sample, where N is generally large. Similarly, N steps
are required to generate a sample using annealed langevin
dynamics.

• If data is perturbed in a continuous-time stochastic process, we
obtain[4]

• Higher quality samples
• Exact log-likelihood computation
• Controllable generation for inverse problem solving

• How to represent a stochastic process?

Using an SDE, because
stochastic Processes are solutions of SDEs.

[4]Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative
modeling through stochastic differential equations. 8
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Score based SDE

• The forward noising process can be modeled using an SDE.

dx = f(x, t) dt+g(t) dw (7)

[1]Anderson, B. D. (1982). Reverse-time diffusion equation models. 9



Score based SDE

• The forward noising process can be modeled using an SDE.

dx = f(x, t) dt+g(t) dw (7)

• Every forward process SDE has a corresponding reverse SDE[1].

dx = [f(x, t)− g(t)2∇x log pt(x)] dt+g(t) dw̄ (8)

[1]Anderson, B. D. (1982). Reverse-time diffusion equation models. 9



Variance exploding (VE) and Variance preserving (VP) SDEs

Noise perturbations used in SMLD and DDPM can be interpreted as
discretizations of two different SDEs.[4]

xi = xi−1 +
√

σ2i − σ2i−1zi−1

dx =

√
d[σ2(t)]

dt
dw

Continuous process corresponding
to SMLD gives rise to VE SDE.

xi =
√
1− βixi−1 +

√
βizi−1

dx = − 12β(t)x dt+
√

β(t) dw

Continuous process corresponding
to DDPM gives rise to VP SDE.

[4]Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative
modeling through stochastic differential equations. 10



Sampling methods in score based
SDE models



Sampling from score based models

• Bottleneck for diffusion models. Sampling is slower in
comparison with other generative models.

• Sampling efficiency metric: number of network function
evaluations (NFE) required to generate an image of desired
quality.

• Eg: If a DDPM takes 1000 steps to generate 1 sample, and each step
requires evaluating the learnt neural network once, then NFE=1000.

• Sample quality metrics: FID, inception score.

We will look at various sampling techniques in the upcoming slides.

11
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Predictor-Corrector Sampler

• DDPM uses ancestral sampling, but doesn’t use a
langevin-based step. SMLD samples according to langevin
dynamics only.

What if we use both sampling techniques? Will it
improve sample quality?

• Predictor-Corrector samplers first make a prediction step (solve
the DE) followed by a corrector step (gradient ascent).

• Predictor is any numerical SDE solver that predicts xt+∆t.
• Corrector is any MCMC approach that uses score function.

• This makes sampling more efficient and improves sampling
quality, when compared to using predictor-only or
corrector-only samplers.
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Probability Flow ODE

• Probability Flow ODE is obtained by converting SDE to ODE
without changing marginal distribution.

dx = [f(x, t)− 1
2g(t)

2∇x log pt(x)] dt (9)

• By solving this ODE, we can sample from the same distributions
as the reverse SDE. The probability flow ODE becomes a special
case of a neural ODE.

• State of the art ODE solvers can be used to generate samples
efficiently.

13
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Probability Flow ODE

In particular, PF is an example of continuous normalizing flows since
the probability flow ODE converts a data distribution to a prior noise
distribution (since it shares the same marginal distributions as the
SDE) and is fully invertible.

Figure 2: Comparing different reverse time SDE solvers on the CIFAR10
dataset[4]

[4]Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative
modeling through stochastic differential equations. 14



Fast Sampling: DEIS and a more
general SDE



Faster Sampling

• Zhang et al.[5] discuss two main ways to improve sampling
efficiency:

• Optimize the forward process so that backward process is more
efficient. E.g. DDIM[2] uses a non-markovian noising process.

• Speed up the numerical solver for SDEs or ODEs.

• Diffusion Exponential Integrator Sampler (DEIS)[5] attempts the
latter approach, and can be used on any pretrained diffusion
model.

• DEIS achieves SOTA performance when NFE is small: 4.17 FID with
10 NFEs, 2.86 FID with 20 NFEs on CIFAR10 dataset.

[5]Zhang, Q., & Chen, Y. (2022). Fast sampling of diffusion models with exponential integrator. 15
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Diffusion Exponential Integrator Sampler (DEIS)

DEIS assumes a forward diffusion process with a linear drift
coefficient.

dx = Ftx dt+Gt dw (10)

A family of reverse SDEs is given by

dx̂ =
[
Ftx̂−

1+ λ2

2 GtGTt sθ(x̂, t)
]
dt+λGt dw . (11)

When λ = 0 the above equation corresponds to the probability flow
ODE, while λ = 1 gives us the approximated reverse SDE for the
above forward SDE.

16



Diffusion Exponential Integrator Sampler (DEIS)

The error of the generative model is defined as the difference
between p0(x) and p̂0(x). Two error sources:

Fitting Error Difference between the learned score network and
ground truth score.

Discretization Error Errors introduced in the discretization process
to solve reverse SDE equations numerically.

Objective: to minimize the above two errors so as to increase the
step-size in the discretization process without compromising on the
sample quality.

17



Minimizing the discretization error

Consider the case of probability flow ODE.

dx̂ =
[
Ftx̂−

1
2GtG

T
t sθ(x̂, t)

]
dt . (12)

The exact solution to the above ODE is given by

x̂t = Ψ(t, s)x̂s +
∫ t

s
Ψ(t, τ)

[
− 12GtG

T
t sθ(x̂τ , τ)

]
dτ (13)

where Ψ(t, s) satisfying ∂
∂tΨ(t, s) = FtΨ(t, s) and Ψ(s, s) = I is known

as the transition matrix from time s to t associated with Fτ .

[5]Zhang, Q., & Chen, Y. (2022). Fast sampling of diffusion models with exponential integrator. 18
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x̂t = Ψ(t, s)x̂s +
∫ t

s
Ψ(t, τ)

[
− 12GtG

T
t sθ(x̂τ , τ)

]
dτ (13)

If we have sθ(xt, t) = ∇x log pt(x) ∀x, t and p̂∗T = π, then it has been
shown by [5] that the estimated p̂∗t exactly matches the actual
pt ∀0 ≤ t ≤ T. The problem is that this assumption is not true for
most choices of x, t. We discretize the above and get an approximate
solution.

[5]Zhang, Q., & Chen, Y. (2022). Fast sampling of diffusion models with exponential integrator. 18



Ingredients for fast sampling

The EI approach gives the following discretized solution.

x̂t−∆t = Ψ(t−∆t, t)x̂t +
∫ t−∆t

t
Ψ(t−∆t, t)

[
− 12GτGTτdτ

]
sθ(x̂t, t) (14)

• If we assume sθ(x̂t, t) is constant over the time interval [t−∆t, t],
then the score approximation error increases, and EI approach
perform worse than the Euler method.

• To address the above issue, a different parameterization of the
score network is used.

∇ log pt(x) ≈ −L−Tt ϵθ(x, t), LtLTt = Σt (15)

In this case, we assume that ϵθ(x, τ) is constant over the time
interval τ ∈ [t−∆t, t].

19



Ingredients for fast sampling

• The score approximation error ∆s reduces now!
• However, the polynomial extrapolation of ϵθ gives even better
results as compared to the above zeroth order approximation.

Figure 3: Improving upon score approximation.[5]

[5]Zhang, Q., & Chen, Y. (2022). Fast sampling of diffusion models with exponential integrator. 20



Limitations of DEIS

• Assumes linear drift coefficient.
• No theoretical proofs given. Arguments in the paper come from
intuition and empirical results.

21



Experiments and Discussion



Experiments

• Set up and run Score-SDE and DEIS code bases locally.
• Adapt DEIS (PyTorch) and Score-SDE (PyTorch) codebases to
work with each other.

• Identify improvements to sampling techniques and implement
them.

• Test the improvements.

22



Experiments

• Set up and run Score-SDE and DEIS code bases locally. Done!
• Adapt DEIS (PyTorch) and Score-SDE (PyTorch) codebases to
work with each other. Done!

• Identify improvements to sampling techniques and implement
them. Dormund-Prince method is higher order method than can
work better than Adams-Bashforth method used in a variant of
DEIS.

• Test the improvements. Couldn’t do that - resource constraint!

22



Challenges Faced

• Lack of ease of reproducibility and reusability of code and
programming environment.

• Unavailability of powerful hardware that can experiment with
code (for storage, processing and efficiency).

• Notational inconsistency across literature.
• Involved mathematics and nonintuitive concepts.

23



Summary

We have gone through lots of literature in the domain of
score-based generative models and familiarized ourselves with
various sampling techniques and existing state of the art models.

We have tried to compile all that information in this project
presentation and tried to make it easier to digest.

24



Questions?

24
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