
Segmenting camouflaged objects in the wild

IE643 Challenge Assignment - 2022

Jimut Bahan Pal (22D1594)

October 30, 2022

1 Notes for evaluating the unseen test datasets

Please open the file named IE643 22D1594 CHALLENGE TESTING.ipynb.
There, instructions have been provided to make folders for testing purpose.
Please make sure that the folders follow this structure during the evaluation.

Challenge_Dataset

| Images

| |- Test

| |- Train

| |- Validation

|- Masks

| |- Test

| |- Train

| |- Validation

The model is automatically downloaded and it is your duty to make the
test files, i.e., folders containing images and mask in a structure for proper
evaluation. The pipeline also allows us to see the evaluation scores obtained
on the final test dataset in red color. That is, the mean Loss, mean Accuracy,
mean Dice and mean Jaccard across the full test samples is calculated.

The folder IE643 22D1594 CHALLENGE also comes with the report
present as IE643 22D1594 CHALLENGE REPORT.pdf, model saved in
.pt format and named as IE643 22D1594 CHALLENGE MODEL.pt, and
the whole source code with other variants of U-Net models, such as vanilla U-
Net, Attention U-Net, Residual UNet++, Attention R2-UNet, R2-UNet etc.,inside
the file IE643 22D1594 CHALLENGE CODE.ipynb.

2 ResU-Net architecture

ResU-Net[1] architecture was originally used for segmenting roads from satellite
imagery. Later it was used for several different purposes. We have considered

1

https://jimut123.github.io/


this architecture for our purpose since this will be able to detect camoflauged
objects which cannot be easily detected by other U-Net [2] variants which are
not pre-trained. The architecture uses Resnet-18 pre-trained backbone and we
have used sigmoid as activation function in the last layer of the network, since
the pixel values should be predicted between 0 and 1. The architecture is shown
in Figure 1.

We have used the Pytorch implementation of ResU-Net found in this link
https://github.com/monini13/NucleiSegmentationAI/blob/master/model.py.
The pipeline is created from scratch for the segmentation purpose which is
shared using a Notebook.

3 Data preprocessing

From the samples of the dataset collected as shown in Figure 3, we can see that
the dataset can be quite hard even for humans to distinguish between some of
the region of interests and unnecessary clutter. The objects are well hidden by
giving the same textures as the background of the images. This motivated us
to use architecture which supports pre-trained ImageNet weights, since learning
can be easy and will be superior to those models which are trained from scratch.

We have used a standard pre-processing technique, i.e., we have resized the
images to 256x256 and kept the 3 channels intact, we have also converted the
single channel mask to the same dimension. For the images and masks, we have
divided the intensity values with 255.0 so that the intensities are between 0
and 1. For the purpose of image augmentation, we have used random vertical
and horizontal flips with certain probability (0.5 here), we have also used affine
transformations on both the image and masks pairs. For the training robustness
we have considered 15 random boxes of size 32x32 pixels placed at any location
of the image and mask pairs, which will help increase the robustness of the
training procedure. All the data augmentations considered for the training is
shown in Figure 2.

4 Training procedure

The code is done in Python3 using the Pytorch framework. The ResUNet model
is trained for 500 epochs using Adam optimizer with a learning rate of 1e-04
which uses a weight decay of 5e-04. Training was done using the 1000 images
and validated using the 200 images. We have used a batch size of 64 during
training. This is possible due to the high compute resources provided, and
the results might not be reproducible in google colab. We have used binary
cross-entropy as the loss function which can be written as:

Ly′(y) := − 1

N

N∑
i=1

(y′i log(yi) + (1− y′i) log(1− yi)) (1)

2

https://github.com/monini13/NucleiSegmentationAI/blob/master/model.py


Figure 1: ResU-Net architecture. The image is retrieved from
https://idiotdeveloper.com/what-is-resunet/

3

https://idiotdeveloper.com/what-is-resunet/


(a) Image (b) Mask (c) Boxed image (d) Boxed mask

(e) Horizontal flip
image

(f) Horizontal flip
mask

(g) Vertical flip im-
age

(h) Vertical flip
mask

(i) Random affine
image

(j) Random affine
mask

Figure 2: Simple data augmentations were considered for the training of the
deep neural network architecture. (a) and (b) shows the original image and
mask pairs. Same augmentations were applied to the image and mask pair with
boxed mask where we cropped a box out of the image and mask pairs as shown
in (c) and (d). Horizontal flip of the images and boxed mask is shown in (e) and
(f). Vertical flip of image and mask shown in (g) and (h). Affine transformation
of image and mask is shown in (i) and (j).

4



Figure 3: Samples of validation dataset showing that it is even difficult for
humans to distinguish and segment objects carefully. There are a lot of natural
texture information present in the dataset and using a pre-trained model trained
on ImageNet data will certainly do good.

5



Where, yi is the predicted class per pixel, y′i is the original pixel value of
segmentation mask. All the pixels in the segmentation mask are averaged (over
N) to get the overall loss.

5 Performance metrics

For quantitative analysis the following performance metrics were used, includ-
ing Dice Coefficient (DC), Precision (PC) and Jaccard Similarity (JS) or In-
tersection over Union (IoU). For calculating these we have to use the following
variables, True Positive (TP), True Negative (TN), False Positive (FP), False
Negative (FN), Ground truth (GT), and segmented result (SR). Dice Coef-
ficient, Jaccard Index (IoU) and Precision are calculated using the following
equations,

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

DC = 2× GT ∩ SR

GT + SR
(3)

IoU =
GT ∩ SR

GT ∪ SR
(4)

PC =
TP

TP + FP
(5)

Generally, accuracy does not work for imbalanced data, hence we use two
special metrics which are dice coefficient and jaccard index. These two metrics
shows the relative performances of models using the predicted segmentation
masks and the original ground truth of the images. The values lie between 0
and 1. The values close to 0 gives bad performance and the values close to 1
gives good performance.

6 Plots and Results

The variation of mean Accuracy, mean Loss, mean Dice Coefficient and mean
Jaccard is shown for 500 epochs in Figure 5. Table 1 shows the metrics obtained
for the unseen validation dataset after training on the training images and masks
pairs for different number of epochs. We have compared a simple baseline
of U-Net which gives relatively poor performance. We see that a pre-trained
ResU-Net model on ImageNet dataset gives relatively good performance when
compared to the vanilla U-Net model. The results got from the ResU-Net model
when trained for 500 epochs on the test set is shown in Figure 4.

6



Figure 4: The results of the ResU-Net architecture on test images.

Model Epochs Loss Dice Jaccard Accuracy

U-Net [2] 200 0.8595 0.3685 0.2486 0.8214
ResU-Net [1] 500 0.2898 0.6595 0.5286 0.8952

Table 1: Different evaluation metrics for the validation dataset got after training
different models.

0 100 200 300 400 500
Epochs

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Ac
cu

ra
cy

Training and val Accuracy

Training Accuracy
Validation Accuracy

(a) Accuracy.

0 100 200 300 400 500
Epochs

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Lo
ss

Training and val Loss
Training Loss
Validation Loss

(b) Loss

0 100 200 300 400 500
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Di
ce

Training and val Dice Coef.

Training Dice
Validation Dice

(c) Dice Coef.

0 100 200 300 400 500
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ja
cc

ar
d

Training and val Jaccard

Training Jaccard
Validation Jaccard

(d) Jaccard

Figure 5: Training and validation metrics recorded for the ResU-Net model
during 500 epochs. We can see minor fluctuations during the training, but that
is due to the difficulty in segmenting camouflaged objects.

7



References

[1] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road extraction by deep
residual u-net. IEEE Geosci. Remote. Sens. Lett., 15(5):749–753, 2018.

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Nassir Navab, Joachim
Hornegger, William M. Wells III, and Alejandro F. Frangi, editors, Medi-
cal Image Computing and Computer-Assisted Intervention - MICCAI 2015
- 18th International Conference Munich, Germany, October 5 - 9, 2015,
Proceedings, Part III, volume 9351 of Lecture Notes in Computer Science,
pages 234–241. Springer, 2015.

8


	Notes for evaluating the unseen test datasets
	ResU-Net architecture
	Data preprocessing
	Training procedure
	Performance metrics
	Plots and Results

