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Outline

Outline of the presentation

This is the work done by Yaxing Wang, Lu Yu and Joost van de Weijer, presented
at NeurIPS 2020 conference. In this presentation, we will be going through their work.
The presentation is outlined as follows:

Firstly, we discuss the main problem along with the background of the work.

We also look into some of the existing work in the field of Image to Image (I2I)
translations.

We discuss the methodology for DeepI2I network, the novelties, the architectural
choices and the loss functions used.

Next, we discuss about the dataset used, the training and evaluation metrics.

We further discuss about the training and experiments conducted from our side
and the status of the work.

We conclude the discussion by proposing some modifications to the existing work.
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Background of DeepI2I

Background of the problem

I2I translation is an application of Computer Graphics (CG), used in movie
industries widely (for e.g.: Morphing).

This is a labor-intensive process. The proposed technique can be used to
automatically translate faces/objects between images.

Previous state-of-the-art method showed inferior performances when translation
between classes required large shape changes.

Any object can be translated
to any other object by passing
one image to the model. This
can also be used to create fake
content, i.e., deep fakes!!
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Background of DeepI2I

Background of the problem

First to implement transfer learning framework using GANs – this improves
the performance on small dataset both qualitatively and quantitatively.

They have done translation over 1000 classes in animal faces and food dataset.

Proposed hierarchical translation framework which extracts abstract semantic
information in the deep low-resolution layers of the network and structural
information from the shallow layers.

Objects in images can also be
interpolated from one
image to another with
varying shape changes,
hence creating a morphing
effect.
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Past work - StarGAN

StarGAN: Unified GAN for Multi-Domain I2I translation. 1

Scalable approach that performs I2I
translations for multiple domains using a
single model.

Simultaneous training of multiple domains
with a single network.

High visual quality compared to other
methods at that time.

Generator G takes both image and target
domain label and generates fake label. It
tries to reconstruct the original image from
the fake image by using original domain
label.

StarGAN Training on CelebA dataset (40 labels facial attribute,
hair, eye color etc.) and transferring knowledge from RaFD (8
labels for facial expression, e.g. happy, angry etc.) dataset.
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1Choi et al. 2017
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Past work - BigGAN

Large scale GAN training for high fidelity natural image synthesis 2

First to generate high resolution
diverse complex samples from
ImageNet dataset.

Previous architectures were not good at
generating samples when the images were
scaled up.

Class-conditional image synthesis.

Good Inception Score and Frechet
Inception distance.

This model can also be used for I2I
translation between high resolution images. High quality image translations using BigGAN.

2Brock et al. 2018
8 / 31



Intro Motivation Current Problem Experiments Status of Work Modifications proposed References Acknowledgements

Past work - StyleGAN

A style based generator architecture for GANs 3

Borrowed ideas from style transfer literature to apply in
the Generator of GANs.

The architecture automatically learns unsupervised
separation of high level attributes, e.g. pose, identity
etc when trained on human faces.

They build method for synthesizing stochastic
variation in generated images e.g., frekles, hair etc.
that enables scale specific control synthesis.

Other popular architectures are pix2pix (2016), CycleGAN
(2017), SDIT (Scalable and diverse cross domain image
translation, 2019) and DMIT (Multi-mapping I2I translation
via learning disentanglement, 2019).

3Karras et al. 2019
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Current Problem - Details of DeepI2I

Methodology for DeepI2I

Current I2I architecture have a limited capacity to translate between classes with
significant shape changes (e.g., from dog to meerkat face) due to the high
resolution bottlenecks, which apply only two down-sampling blocks in most
architectures.

These models are successful in style transfer, but it is difficult to extract abstract
semantic information, since these information are present in the deep
low-resolution layers of a network.

The main challenge lies in inverting deep low-resolution bottleneck (latent)
representation into a high-fidelity image, since the deep layers contains
many attribute level information from which it is difficult to reconstruct
realistic images which closely follow the structure of input images.
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Current Problem - Details of DeepI2I

Method Overview

Let X ,Y = RH×W×3 be the source and target domains.

The architecture is composed of four neural networks: encoder Υ, adaptor Λ,
generator Φ and discriminator Ψ.

They aim to learn a network to map the input source image x ∈ X into a target
domain image ŷ ∈ Y conditioned on the target domain label c ∈ {1, . . . , C} and
a random noise vector z ∈ RZ, Φ (Λ (Υ (x)) , c, z) → ŷ ∈ Y.

Latent representation from different layers of encoder Υ is used to extract
structural information (shallow layers) and semantic information (deep
layers).

Let Υl (x) be the l-th (l = m, ..., n(n > m)) ResBlock 4 output of the encoder,
which is fed into the corresponding adaptor Λl, from which it continues as input
to the corresponding layer of the generator.

4The encoder consists of a series of ResBlock. After each ResBlock the feature resolution is half of
the previous one.
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Current Problem - Details of DeepI2I

Method Overview

A hierarchical representation Υ(x) = {Υ(x)l} of input image x is extracted and
fed to the adaptor network as input, that is Λ (Υ (x)) = {Λl}, where (Λl) is the
output of each adaptor Λl which is further summed to the activations of the
corresponding layer of the generator Φ.

In some cases when we train the DeepI2I from scratch, the adaptor could be the
identity function.

The generator takes as input the output of adaptor Λ (Υ (x)), the random noise z
and the target label c. The generator Φ outputs a ŷ = Φ(Λ (Υ (x)) , z, c) which
is supposed to mimic the distribution of the target domain images with label c.

Sampling different z leads to diverse output results ŷ.

This way the adaptor of the network aligns the representations between the
encoder and decoder of the BigGAN network to create meaningful translations,
since there is no connection between them in pre-trained network.
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Current Problem - Details of DeepI2I

Proposed architecture
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Figure 1: Left: the traditional form of conditional GAN (i.e., BigGAN) which contains the
generator Φ and the discriminator Ψ. Right: the proposed DeepI2I method based on
conditional GAN (left). The method consists of four terms: the encoder Υ, the adaptor Λ, the
generator Φ and the discriminator Ψ. The encoder Υ is initialized by pre-trained discriminator
(left), as well as both the generator Φ and the discriminator Ψ by pre-trained GANs (left). The
adaptor Λ aims to align the pre-trained encoder Υ and the pre-trained generator Ψ.
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Loss function - DeepI2I

Method Overview - Losses

The discriminator has three functions:

Distinguish real target images from generated images.
Guide the generator Φ to synthesize images which belong to the class c.
Compute the reconstruction loss, which aims to preserve a similar pose in both
input source image x and the output Φ (Λ (Υ (x)) , z, c).

The reconstruction is computed from the discriminator based on the l-th
ResBlock Ψ, and referred to by {Ψl (y)}.
The overall loss is a multi-task objective comprising of:

A conditional adversarial loss - It optimizes the adverserial game between the
generator and the discriminator, i.e., maximize Ψ while minimize {Υ,Λ,Φ} to
generate class specific images which correspond to label c.
Reconstruction loss - guarantees that the synthesized image
ŷ = Φ(Λ (Υ (x)) , z, c) preserve the same pose as the input image x.
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Loss function - DeepI2I

Method Overview - Losses

Conditional adversarial loss employing GANs

Ladv = Ey∼Y [logΨ (y, c)] + Ex̂∼X ,z∼p(z),c∼p(c) [log(1−Ψ(Φ (Λ (Υ (x)) , z, c) , c)]

Here p (z) follows the normal distribution , and p (c) is the domain label distribution.

Final loss is optimized by mini-max game

{Υ,Λ,Φ,Ψ} = arg min
Υ,Λ,Φ

max
Ψ

Ladv.
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Loss function - DeepI2I

Method Overview - Losses

Reconstruction Loss- based on set of activations extracted from multiple layers of
discriminator Ψ

Lrec =
∑
l

αl ∥Ψ(x)−Ψ(ŷ)∥1

Here parameters αl are scalars which balance the terms, are 0.1 except for α3 = 0.01.
Note that this loss is only used to update the encoder Υ, adaptor Λ, and generator Φ.

Full objective function of the model

min
Υ,Λ,Φ

max
Ψ

λadvLadv + λrecLrec

Here both λadv and λrec are hyper-parameters that balance the importance of each
terms.

17 / 31



Intro Motivation Current Problem Experiments Status of Work Modifications proposed References Acknowledgements

Table of Contents

1 Outline

2 Motivation

3 Current Problem

4 Experiments

5 Status of Work

6 Modifications proposed

7 References

8 Acknowledgements

18 / 31



Intro Motivation Current Problem Experiments Status of Work Modifications proposed References Acknowledgements

Datasets

Datasets and Frameworks

Three datasets were used for this study:

Animal faces - contains 117,574 images and 149 classes in total.
Foods - consists of 31,395 images and 256 classes in total
cat2dog - composes of 2235 images and 2 classes in total.

The images were resized to 128× 128, and divided by 255.0.

The dataset is split into training set (90 %) and test set (10 %).

The datasets were pre-processed to .HDF5 files for faster I/O and batch-sized
pre-processing, this was borrowed from BigGAN code.

The code is done in Python3 and Pytorch1.12.1 framework was used in this
study.
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Metrics

Evaluation metrics

Four evaluation metrics were considered for this training:

Fréchet Inception Distance (FID) - measures the similarity between two sets in
the embedding space given by the features of a convolutional neural network.
Kernel Inception Distance (KID) - calculates the squared maximum mean
discrepancy to indicate the visual similarity between real and synthesized images.
We further evaluate on two metrics of translation accuracy to show the ability of the
learned model to synthesizing the correct class-specific images, called real classifier
(RC) (trained on real data and evaluated on the generated data) and fake
classifier (FC) (trained on the generated samples and evaluated on the real
data).

The mean values of all categories in terms of FID and KID is denoted as mFID
and mKID.
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Metrics

Training and Evaluation metrics

These are the main results which shows that DeepI2I scratch performs best in
case of Animal faces dataset.

When transfer learning is applied, the metrics improves significantly for the Foods
dataset.
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Initial Experiments

Results of experiments conducted

We were sucessfully able to reproduce the
results as shown in the paper.

We were also able to generate some
samples between the training and generate
the videos in the transitions.

We are planning to add one more dataset
for the final review.

The more we train the more the images
looks real, but there might be a chance of
mode collapse.

Show the videos generated.
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Modifications proposed

Modifications proposed

We are planning to run the model on NABirds datasets and also check different
types of Loss functions. (https://dl.allaboutbirds.org/nabirds)

The dataset will need to be converted to .HDF5 format for faster pre-processing
which is required by this architecture.

This dataset is a collection of 48,000 annotated photographs of the 400 species of
birds that are commonly observed in North America.

Over 100 photographs are available for each species, including separate
annotations for males, females and juveniles that comprise 700 visual categories.
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