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Motivation for Generating images1

1https://jonathan-hui.medium.com/

gan-whats-generative-adversarial-networks-and-its-application-f39ed278ef09
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Motivation for Generating images

Yann LeCun described GANs as ”the most interesting idea in the last 10 years in
Machine Learning”.
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What are GANs?

The training data comes from some underlying complex high-dimensional
distribution pdata(x).
New data can be generated by sampling from this distribution using a generator
pG(x).
GANs overcome this problem by sampling from a simple distribution, and then
learn a complex distribution to generate training data.
The complex transformation is a deep neural network.

Figure 2: Generator tries to learn the underlying distribution.
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What are GANs?

Training is done using a two player game which comprise of a generator and a
discriminator.

Generator produces the images that appear to be real.

The discriminator tries to detect if an image is real or fake.
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Generator model

Gθ(z), where z is the input and θ are the parameters of the model.

Input: Noise vector z ∼ pz(z) which can be N (0, I)

Gθ is the neural network model.
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Discriminator model

Dϕ(x), where x is the input to the discriminator and ϕ are the parameters.

Input can come from data or generator:

x if coming from the data.
Gθ(z) if coming from the generator.

Dϕ is a neural network model.
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Discriminator model

The discriminator Dϕ(x) outputs a score between 0 and 1.

This is a probability of an image being real or fake.

It is 0 if the image is fake and 1 if it is real.
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Generator Objective

The generator wants its output Gθ(z) to be classified as real. Therefore, it wants
to: max

θ
logDϕ(Gθ(z)) or min

θ
log(1−Dϕ(Gθ(z))

We want the generator to do this task for all possible values of z sampled from
the distribution pz(z). Therefore the objective becomes:
min
θ

∫
pz(z) log(1−Dϕ(Gθ(z))dz = min

θ
Ez∼pz(z)[log(1−Dϕ(Gθ(z)))]
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Discriminator Objective

The discriminator should assign high score to real images
max
ϕ

Ex∼pdata [logDϕ(x)]

Low scores (minimize) to generated images min
ϕ
Ez∼pz [logDϕ(Gθ(z))] or

max
ϕ

Ez∼pz [log(1−Dϕ(Gθ(z)))]

The combined discriminator objective function can be written as:
max
ϕ

Ex∼pdata [logDϕ(x)] + Ez∼pz [log(1−Dϕ(Gθ(z)))]
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Combined objective function

The generator and discriminator’s objective combined yeilds a minmax problem:
min
θ

max
ϕ

Ex∼pdata [log Dϕ(x)] + Ez∼pz [log(1−Dϕ(Gθ(z)))]

The first expectation is independent of θ.

The second expectation is minimized w.r.t. θ and maximized w.r.t ϕ, hence, the
generator wants to minimize the second term while the discriminator wants to
maximize it.
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Problem in gradient

Early on in training it is more likely that Dϕ(Gθ(z)) ≈ 0 as the generator has not
learnt much and it is easy for the discriminator to identify the difference between
real and fake samples.

In such a situation, the gradient of log(1−Dϕ(Gθ(z))) is close to zero. The
generator does not learn much in the beginning and there is little change in θ.
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Modified objective

Originally we were performing minimization w.r.t. the generator parameters θ:
min
θ
Ez∼pz(z)[log(1−Dϕ(Gθ(z)))]

Now, we use a modified version of the above (minimization) objective:
min
θ
Ez∼pz(z)[− log(Dϕ(Gθ(z)))] ≡ max

θ
Ez∼pz(z)[log(Dϕ(Gθ(z)))]
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Modified objective

We modify the objective function to − log(Dϕ(Gθ(z)))

This has large gradient when Dϕ(Gθ(z)) ≈ 0

This also enables the generator to learn more in the early training period.
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Algorithm for training GANs

Algorithm 1Minibatch stochastic gradient descent training of generative adversarial
nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We
used k = 1, the least expensive option, in our experiments.

for number of training iterations do
for k steps do
• Sample minibatch of m noise samples {z(1), . . . ,z(m)} from noise prior
pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating
distribution pdata(x).
• Update the discriminator by ascending its stochastic gradient:

∇θd
1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)
)))]

.

end for
• Sample minibatch of m noise samples {z(1), . . . ,z(m)} from noise prior
pg(z).
• Update the generator by descending its stochastic gradient:

∇θg
1

m

m∑
i=1

log
(
1−D

(
G
(
z(i)
)))

.

end for
The gradient-based updates can use any standard gradient-based learning
rule. We used momentum in our experiments.

1
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Theoritical Analysis

Objective: min
G

max
D

Ex∼pdata(x)[log Dϕ(x)] + Ez∼pz(z)[log(1−Dϕ(Gθ(z)))]

We can re-write the objective function as:
min
G

max
D

∫
x pdata(x) log Dϕ(x)dx +

∫
z pz(z) log(1−Dϕ(Gθ(z)))dz

min
G

max
D

∫
x pdata(x) log Dϕ(x)dx +

∫
x pG(x) log(1−Dϕ(x))dx

Revised objective can be written as: min
G

max
D
M(Gθ, Dϕ)

Where: M(Gθ, Dϕ) =
∫
x(pdata(x) log Dϕ(x) + pG(x) log(1−Dϕ(x)))dx

For a given generator Gθ, we need the discriminator Dϕ which maximizes the
objective.

The objective is maximized when the integrand is maximized. Differentitating the
integrand w.r.t. Dϕ yields:

d

d(Dϕ(x))
(pdata(x) logDϕ(x) + pG(x) log(1−Dϕ(x))) = 0
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Theoritical Analysis

(pdata(x)
1

Dϕ(x)
− pG(x)

1

1−Dϕ(x)
)

d

d(Dϕ(x))
Dϕ(x) = 0

pdata(x)
1

Dϕ(x)
= pG(x)

1

1−Dϕ(x)

Dϕ(x) =
pdata(x)

pG(x) + pdata(x)

Therefore for optimal discriminator we have: D*
ϕ(x) =

pdata(x)

pG(x) + pdata(x)

Let C(Gθ) = maxM(Gθ,Dϕ) =M(Gθ,D
*
ϕ). Therefore, we have:

C(Gθ) =∫ (
pdata(x) log

(
pdata(x)

pG(x) + pdata(x)

)
+ pG(x) log

(
1− pdata(x)

pG(x) + pdata(x)

))
dx.

=
∫ (

pdata(x) log

(
pdata(x)

pG(x) + pdata(x)

)
+ pG(x) log

(
pG(x)

pG(x) + pdata(x)

))
dx
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Theoritical Analysis

=
∫

(pdata(x)

(
log 2 + log

(
pdata(x)

pG(x) + pdata(x)

))
+

pG(x)

(
log 2 + log

(
pG(x)

pG(x) + pdata(x)

))
− (pdata(x) + pG(x)) log 2)dx

=
∫ pdata(x)

log
pdata(x)

pG(x) + pdata(x)

2

+ pG(x)

log
pG(x)

pG(x) + pdata(x)

2


 dx−

log 2
∫

(pdata(x) + pG(x)) dx

= KL

(
pdata(x)||pG(x) + pdata(x)

2

)
+ KL

(
pG(x)||pG(x) + pdata(x)

2

)
− 2 log 2

Theorem

The global minimum of C(Gθ) is achieved if and only if pG = pdata.
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Theoritical Analysis2

C(Gθ) =

KL

(
pdata(x)||pG(x) + pdata(x)

2

)
+ KL

(
pG(x)||pG(x) + pdata(x)

2

)
− 2 log 2

If pG = pdata, then the minimum of C(Gθ) is attained

For pG = pdata, we have minG C(Gθ) = − log 4 as KL(pG||pG) = 0.

For pG 6= pdata, we have minG C(Gθ) ≥ − log 4 as KL(.||.) ≥ 0.

If the minimum of C(Gθ) is achieved, then pG = pdata
C(Gθ) =

KL

(
pdata(x)||pG(x) + pdata(x)

2

)
+ KL

(
pG(x)||pG(x) + pdata(x)

2

)
− log 4

= 2JS(pdata(x)||pG(x))− log 4

2JS(pdata(x)||pG(x)) = 0 only when pG = pdata
2From the notes of Dripta Mj, RKMVERI
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DeepI2I: Summary

Image to Image (I2I) translation is used in the field of Computer Graphics (CG),
specially in the movie industries.

Traditionally this is a labour intensive process, and the proposed technique can be
applied to automatic translation of faces/objects.

I2I translations shows inferior performance when translations between classes
requires large shape changes.

Learn the model by leveraging hierarchical features:

Structural information contained in the shallow layers.
Semantic information extracted from the deep layers.

Implemented a novel transfer learning method by transferring knowledge from
pre-trained GANs, enabling learning on small datasets.
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DeepI2I: Summary

Leverage the discriminator of pretrained GAN to initialize the encoder and
discriminator, and leverage the pretrained generator to initialize the generator of
their model.

Introduced Adaptor network to address the alignment problem between encoder
and decoder when using knowledge transfer.

They are first to do I2I trainslation over 1000 classes in animal faces, birds and
food datasets.

They qualitatively and quantitatively showed that transfer learning significantly
improves the performance of I2I systems for small datasets.
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DeepI2I: Model

  Inner 
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Figure 3: Left: the traditional form of conditional GAN (i.e., BigGAN) which contains the
generator Φ and the discriminator Ψ. Right: the proposed DeepI2I method based on
conditional GAN (left). The method consists of four terms: the encoder Υ, the adaptor Λ, the
generator Φ and the discriminator Ψ. The encoder Υ is initialized by pre-trained discriminator
(left), as well as both the generator Φ and the discriminator Ψ by pre-trained GANs (left). The
adaptor Λ aims to align the pre-trained encoder Υ and the pre-trained generator Ψ.
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DeepI2I: Results
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