
Ramakrishna Mission Vivekananda Educational & Research
Institute

Belur Math, Howrah, West Bengal
School of Mathematical Sciences, Department of Computer Science

Assignment - 1 (Theory + Practice)
M.Sc. Computer Science and Big Data Analytics Date: 11 Feb 2024
Course : CS411: Applications of Computer Vision and Deep Learning
Deadline: 3rd-March-2024, 11:59 P.M.
Instructor: Jimut Bahan Pal Max marks: 140

Instructions: Attempt all the questions; try to solve the theory/proof questions in rough first, and
later correctly write it on a sheet of paper and make a PDF document using any mobile scanner.
The document should be within 15 MB, and the writing should be visible, with clear contrast
between the paper and the ink. One single PDF should be submitted alongside the jupyter-
notebook. Submit the code and the PDF writings as Name ROLL.zip and send it to the reply
email on jimutbahanpal@yahoo.com AND jpal.cs@gm.rkmvu.ac.in as Carbon Copy (CC). You
may also CC it to your other personal email address to check whether the email has gone to the
address. Submission after the deadline will fetch you -5 marks per day, so start early!

1. (25)x = torch.tensor([0.1, 0, 0.2, 1], dtype=torch.float32, requires_grad=True)

z = torch.tensor([-1, 1, -1, 0], dtype=torch.float32, requires_grad=True)

a = x + 10%4 + z

b = a**(4*x)

c = (b + 3)*5

y = c.mean()

y.backward()

You must compute the x.grad and z.grad (i.e., the gradient of the leaf variables) by hand. Please
show all the workings in the pdf submitted. You need to explain what is happening by drawing
diagrams of the computation tree, and you can check the code in pytorch too. Proper variables and
calculations should be shown in the PDF and should be consistent with the output in Pytorch.
Please refer to ACVDL Lec 2 Pytorch Fundamentals.ipynb notebook for this question and
gradient computation.

2. (35)(a) Please refer to the notes of Lecture-3 and Lecture-5 for this. See Figure a; you need to derive
the change in weight, i.e., ∆w11’s equation. Please absorb any constant inside the learning
rate. Derive to find ∆w11 = η(t1 − o1)o1(1− o1)x1. (30)

Figure 1: Figure of a neural network having sigmoid as activation.

https://jimut123.github.io/courses/vision/offering1_sem2_2024.html
https://jimut123.github.io/
https://jimut123.github.io/courses/vision/assets/Lecture_3/Lecture_3_Notes.pdf
https://jimut123.github.io/courses/vision/assets/Lecture_5/Lecture_5_Notes.pdf


Use the same set of procedures followed in the class to produce the final results. Here, the
target vector is <t1,t0>and the observed vector is <o1,o0>. Use the total sum of squared loss,

i.e, TSS =
1

2
[(t1 − o1)

2 + (t2 − o2)
2]

(b) Also, try to figure out all the the possibilities of vanishing gradient for this problem. (5)

3. (80)This part of the assignment takes you through building a classification network pipeline using
pytorch from scratch. You must use the Google Colaboratory platform or any other GPU compute
resource and submit the notebook for this task. You can tune the model’s parameters to run it
in decent-sized images without further hurting its performance. Everything in this assignment is
left to the doer’s choice to tune and play with for a better learning experience. Investing at least
5-10 hours for this assignment is required. The notebook should be self-explanatory, and you must
demo the assignment in class using a loaded model that you will train and save over time. The
focus should be on visualizing the qualitative results and easy demo within 5-10 minutes. Please
practice the demo 1-2 times before the final one.

Accessing the data inside Google Colab. You can access the data here: https://drive.google.

com/drive/u/2/folders/1Q_hzYMevVidcCHbW8SH-n3ztilmW3Z1B. Or you can use this command
as it is in colab.

! pip install --upgrade --no-cache-dir gdown

! gdown 1M8BY0yFrLX3liHUOHnBTes8HMa8507BS

! unzip -qq animals.zip

This dataset has 3000 images uniformly distributed across the classes for easy implementation in
the Google Colaboratory platform.

The data is divided into 3 folders, with cats, dogs, and pandas as class labels, corresponding to 1000
images from individual classes. You must refer to the ACVDL Lec 3 Pytorch count 1gt0.ipynb
notebook shared in class and use it as a skeleton for this assignment. You can refer to a friend and
discuss the logic for this task, but you should code individually and not copy from another person’s
work. The current assignment is divided into the following parts:

(a) Use a seed value of 42 for Numpy, random, and torch, and split the dataset into 70-10-20
images uniformly over all the classes separately. This will ensure that 700 images (i.e., 70%)
of each class are used for training, 10% for validation, and 20% for testing. Please refer your
friend to check if the images are consistent for individual splits. Please plot the first 5 images
of train, validation, and test from each class (i.e., 45 images in total). Label the training set,
validation set, and test set accordingly in the notebook while plotting. (10)

(b) Extend the current data-loader to take in images and return the class value as one-hot-vector
of size 3. (5)

(c) Build a CNN model from scratch using the Pytorch torch.nn module and use proper convolutional,
batch norm, ReLU, max pool, and sigmoid layers when necessary. You can tune the architecture,
but no pre-trained model should be used for this task. The model’s output should be of size
3, and a softmax activation should be required for this task. (15)

(d) Use data augmentation (you can choose any existing libraries like albumentations; code that
does data augmentation from scratch will receive extra credit). Visualize the augmentations
according to a given input image example. Use at least 3 data augmentation for a given image.
Use random augmentations. Use relevant input size. Standard input sizes are 256x256,
128x128, and 64x64, but please don’t go below this since the images will become pixelated.
You can check with the Google Colaboratory runtime to see which image is optimal and create
a model according to that. See that each epoch is run within 3-4 minutes to have a decent
number of epochs, at least 30, during training. (10)

(e) Extend the current code by modifying the training pipeline to support the validation function.
Check that there is no gradient update during this function’s implementation. (5)

https://drive.google.com/drive/u/2/folders/1Q_hzYMevVidcCHbW8SH-n3ztilmW3Z1B
https://drive.google.com/drive/u/2/folders/1Q_hzYMevVidcCHbW8SH-n3ztilmW3Z1B
https://github.com/albumentations-team/albumentations


(f) Use relevant metrics for classification and dump the metrics for each epoch for training
validation as separate text files. Plot the metrics at the end of the training. You may choose
any number of epochs that give optimal results on the validation set. Accuracy, precision,
and recall are good metrics to start with, but you can choose any other relevant metrics with
proper reference and justification. Use proper optimizer and learning rate. Tune the hyper-
parameters to get optimal results, and plot the graphs according to the hyper-parameters
tuned. (10)

(g) Try to see the misclassified examples and come up with an explanation for why things are not
working. (You might get extra credit if you find innovative techniques for visualizations.) (5)

(h) Report the test metrics across the untouched 200 images and display the first 10 images from
each class. (5)

(i) Make a procedure to load the model and use it for the experiments in the test set. You must
show the notebook’s test set by loading the model in the fly. (5)

(j) Make confusion metrics and confusion-metrics-like-plots for the randomly picked images and
their softmax scores as probability maps below each image. This will help us explain which
cat image is classified as a cat, dog, or panda, which dog image is classified as a cat, dog, or
panda, and vice versa. Please use proper plots for this by picking randomly from the test set
and testing your model. (10)

(k) Students who use different loss functions other than the cross-entropy loss function, which
achieves better results than before, will get extra credit. This also should be referred to as
why you chose the particular loss function. (bonus 10)


