

PixelSecurer

Enhancing Privacy in Age Recognition From Images

Presented By Sourish Ghosh and Anirban Dey

Guide

Jimut Bahan Pal, IIT BOMBAY

Contents

1.	Introduction	01
2.	Motivation and Application	02
3.	Problem Statement	03 - 04
4.	Literature Review	05 - 12
5.	Results and Findings	13 - 14

Introduction

Machine unlearning is the process of removing the influence of a specific subset of data from a trained machine learning model.

Motivation

Why it is needed and where to apply?

Why?

Machine unlearning is needed because it can help us protect privacy, ensure fairness, maintain data quality, or comply with regulation.

Applications

- 1. Data Deletion Request
- 2. Data Correction
- 3. Data Debiasing And many more...

•

Our Goals

Goal # 2

Train another model on the Retain Dataset for the same purpose.

Problem Statement

Goal # 3

Using Machine Unlearning Compare between Unlearned model and Ideal Model

Basic Outline

Here is the basic outline...

Naive Unlearning

Approximate Unlearning

Some Mathematics

- \boldsymbol{X} : Feature space
- *Y* : Output space
- **Z*** : Space of datasets
- $D \in \mathbb{Z}^*$: Multiset of data points (Allowing for duplicate entries)
- A hypothesis function $h: \mathcal{X} \rightarrow \mathcal{Y}$ which assigns an output $y = h(x) y \in \mathcal{Y}$ to a given input $x \in \mathcal{X}$

Training Algorithm: Training algorithm can be viewed as a map $\mathcal{A}: \mathbb{Z}^* \to \mathcal{H}$, where \mathcal{H} is the space of all hypothesis functions, whose objective is to minimize a non-negative real-valued loss function L(h,D).

Update Mechanism: An update mechanism is a map $U : \mathcal{H} \times Z^* \times Z^* \to \mathcal{H}$, which takes as input, a model $\mathbf{h} \in \mathcal{H}$, two datasets \mathbf{D} , $D_u \in \mathbb{Z}^*$, and outputs a new model $\mathcal{U}(\mathbf{h}, \mathbf{D}, D_u) \in \mathcal{H}$.

The Goal of an **unlearning algorithm** is to remove the influence of a subset $D_{\mu} \subseteq D$ of **m** samples from the trained machine learning model $\mathcal{A}(D)$.

Data Description

- AgeDB contains 16, 488 images of various famous people, such as actors/actresses, writers, scientists, politicians, etc.
- Every image is annotated with respect to the identity, age and gender attribute.
- There exist a total of 568 distinct subjects.
- The average number of images per subject is 29.
- The minimum and maximum age is 1 and 101, respectively
- The median of average ages for each subject is 50.3 years approx.

Scatter plot depicting the age distribution in the AgeDB database.

Page: 6

ID: Douglas, Michael Age: 35

ID: Dalton, Timothy Age: 48

ID: Sinatra, Frank Age: 56

ID: Disney, Walt Age: 64

Random images from the AgeDB Database

NOTIONS

 $D \,=\, \{x_i, y_i\}_{i=1}^N$ $x_i\,\in\,\mathbb{R}$ $y_i \in \mathbb{R}$ $D_f = \text{Data Points we wish to forget}$ $D_r = \text{Data Points we wish to retain}$ $D = D_f \cup D_r$ $\phi = D_f \cap D_r$

Blind-Spot Unlearning

Partially expose a randomly initialized model to few samples from the retain set.

- □ It is trained on the retain samples for a few epochs. This gives the model a vague idea about the output distribution in the absence of the forget set from the training data.
- The forget set is a *blindspot* for this model. This partially learned blindspot model acts as unlearning helper. an
- \Box Let the blindspot model be denoted as $B(.; \theta)$. We denote the original fully trained model by $M(x_i, \emptyset)$.
 - In our method, the model M is updated to obtain the final unlearned model.

Blind-Spot Unlearning (Cont.)

 \Box Let the prediction made by the original model on *i* th sample of dataset D is $M(x_i; \phi)$ and y_i is the corresponding correct label. Then the loss for samples in D_r is

 $L_r \leftarrow L(M(x_i; \phi), y_i); \forall x_i \in D_r$

- where *L* denotes a standard loss function used in a regression task.
- \Box Let $M(x_i; \phi)$ denote the prediction of fully trained model on sample x_i of dataset D. Similarly, let $B(x_i; \theta)$ denote the prediction of the blindspot model. If the sample x_i is a part of the forget set D_f , then the following loss is computed:

 $L_f \leftarrow L(M(x_i; \phi), B(x_i; \theta)); \forall x_i \in D_f$

Blind-Spot Unlearning (Cont.)

Given Finally, we optimize the closeness of activations (Micaelli & Storkey, 2019) between the last k layers of model M and B on the forget set D_f

$$L_{attn} \leftarrow \lambda \sum_{j=1}^{k} \|act_{j}^{\phi} - act_{j}^{\theta}\|$$

- \Box where act_i^{Φ} and act_i^{θ} corresponds to the *jth* layer of activation map in the original model M and blindspot model B. λ is a parameter used to control the relative degree of significance of the loss terms.
- □ The final loss is computed as:
- $L \leftarrow (1 l_f^i)L_r + l_f^i(L_f + L_{attn})$ \Box where $l_f^i = 1$ for samples in the forget set and $l_f^i = 0$ otherwise.

Gaussian Amnesiac Unlearning

- □ In this method, the label of a sensitive data is replaced with an incorrect label.
- The incorrect labels are sampled from a Gaussian distribution instead of random assignment.

Gaussian Amnesiac (Cont.)

- \square $M(., \emptyset) \leftarrow$ Pre-Trained Model
- \Box **D** \leftarrow Original Dataset
- □ D' ← Modified Dataset with wrong Forget Labels

for
$$i = 1, 2, 3, ..., n$$

for $(x_i, y_i) \in D'$
 $y_i^{pred} = M(x_i, \emptyset)$
 $L_M = L(y_i^{pred}, y_i)$
 $\emptyset = \emptyset - \alpha \frac{\partial L_M}{\partial \emptyset}$

Results and Findings

Forget Set	Metric	Original	Retrained	Gaussian Amnesiac	BlindSpot
0 - 30	W_Distance(1)	6.3929	-	0.6148	3.4921
60 - 101	W_Distance(1)	8.7661	-	1.6962	1.9200

To measure the similarity between output distributions of different models we will use **1ST** WASSERSTEIN DISTANCE $|d\gamma(x,y)|$

$$W_1(p,q) = \inf_{\gamma \in \Gamma(p,q)} \int_{\mathbb{R} imes \mathbb{R}} |x-y|$$

Ramdas, A., Garc´ıa Trillos, N., and Cuturi, M. On wasserstein two-sample testing and related families of nonparametric tests. Entropy, 19(2):47, 2017.

Page : 13

Results and Findings

Exact Unlearned Model (Trained on 100 epochs)

Evaluating Exact Unlearn Model on Retain Data : {Loss : 9.8752} Evaluating Exact Unlearn Model on Forget Data : {Loss : 20.4281}

G-A Unlearned Model (Trained on 5 epochs)

Evaluating G-A Unlearned Model on Retain Data : {Loss : 9.6447} Evaluating G-A Unlearned Model on Forget Data : {Loss : 20.78454}

BLSP Unlearned Model (Trained on 2 + 5 epochs) Evaluating Blspt Unlearn Model on Retain Data : {Loss : 9.8752} Evaluating Blspt Unlearn Model on Forget Data : {Loss : 18.85484}

Reference

	1	Bourtoule, L., Chandrase Zhang, B., Lie, D., and Pa Symposium on Security at
-	2	Brophy, J. and Lowd, D. <i>Conference on Machine I</i>
	3	Cao, Y. and Yang, J. Towa 2015 <i>IEEE Symposium or</i>
	4	Chundawat, V. S., Tarun, teaching induce forgetting teacher. In <i>Proceedings o</i>
	5	Chundawat, V. S., Tarun, A machine unlearning. IEEE 2023b.
	6	Chundawat, V. S., Tarun, Regression Unlearning. <i>4</i> <i>Honolulu, Hawaii, USA</i> .

ekaran, V., Choquette-Choo, C. A., Jia, H., Travers, A., Papernot, N. Machine unlearning. In 2021 *IEEE* and *Privacy (SP)*, pp. 141–159. IEEE, 2021.

Machine unlearning for random forests. In *International Learning*, pp. 1092–1104. PMLR, 2021.

ards making systems forget with machine unlearning. In *n Security and Privacy*, pp. 463–480. IEEE, 2015.

A. K., Mandal, M., and Kankanhalli, M. Can bad g? unlearning in deep networks using an incompetent of the AAAI Conference on Artificial Intelligence, 2023a.

A. K., Mandal, M., and Kankanhalli, M. Zero-shot E Transactions on Information Forensics and Security,

A. K., Mandal, M., and Kankanhalli, M. Deep 40th International Conference on Machine Learning, PMLR 202, 2023

Thank You For Listening

Back to Wasseypur

Anirban Dey

M.Sc. Big Data Analytics, RKMVERI, Belur

Sourish Ghosh

M.Sc. Big Data Analytics, RKMVERI, Belur