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Introduction

} Machine unlearning is the process
of removing the influence of a

specific subset of data from a
trained machine learning model.




Motivation

Why it is needed and where to apply?

Why?

Applications

Machine unlearning is needed
because it can help us protect
privacy, ensure fairness, maintain
data quality, or comply with

regulation.

1. Data Deletion Request
2. Data Correction

3. Data Debiasing

And many more...




Our Goals

Problem Statement

Goal # 1

Train a ML/DL model for
predicting age from Images

Goal # 2

Train another model on the
Retain Dataset for the
same purpose.

Goal # 3

Using Machine Unlearning
Compare between Unlearned
model and Ideal Model




Basic Outline

Here is the basic outline...
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Some Mathematics

X : Feature space

* Y : Output space

* Z*:Space of datasets

D € Z*: Multiset of data points (Allowing for duplicate entries)

* A hypothesis function h : X = Y which assigns an output y = h(x) y€ Y to a given input x € X

Training Algorithm: Training algorithm can be viewed asamap A : Z° - H, where H is the space of
all hypothesis functions, whose objective is to minimize a non-negative real-valued loss function

L(h, D).

Update Mechanism: An update mechanismisamap U : H x Z *x Z2* - H, which takes as input, a
model h € H, two datasets D, D,, € Z *, and outputs a new model U(h, D, D, ) € H.

The Goal of an unlearning algorithm is to remove the influence of a subset D,;, € D of m samples from
the trained machine learning model A(D).



Data Description

* AgeDB contains 16, 488 images of various famous people, such as actors/actresses, writers, scientists,
politicians, etc.

* Every image is annotated with respect to the identity, age and gender attribute.

* There exist a total of 568 distinct subjects.

The average number of images per subject is 29.

* The minimum and maximum age is 1 and 101, respectively
The median of average ages for each subject is 50.3 years approx.
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NOTIONS

D = {z;, yz}zj,\il

r; € R

yi € R

D= Data Points we wish to forget
D, = Data Points we wish to retain
D=D;UD,

o =D¢ND,



Blind-Spot Unlearning

J Partially expose a randomly initialized model to few samples from the retain set.

It is trained on the retain samples for a few epochs. This gives the model a vague idea
about the output distribution in the absence of the forget set from the training data.

d The forget set is a blindspot for this model. This partially learned blindspot model acts as
an unlearning helper.

[ Let the blindspot model be denoted as B(.;8). We denote the original fully trained
model by M (x;, ).

d In our method, the model M is updated to obtain the final unlearned model.

Source: Deep Regression Unlearning, Ayush K Tarun, Vikram S Chundawat, Murari
; Mandal, Mohan Kankanhalli; [Submitted on 15 Oct 2022 (v1), last revised 31 May 2023. Published
Page : 8 in 4oth International Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR 202,
2023. Copyright 2023 by the author(s).


https://arxiv.org/abs/2210.08196v1

Blind-Spot Unlearning (Cont.)

[ Let the prediction made by the original model on i th sample of dataset D is M(x; ; ¢) and
y; is the corresponding correct label. Then the loss for samples in D, is

L. L(M(x;; ¢$),y:); Vx; € D,
J where L denotes a standard loss function used in a regression task.
1 Let M(x;; ¢) denote the prediction of fully trained model on sample x; of

dataset D. Similarly, let B(x; ; 8) denote the prediction of the blindspot model. If
the sample x; is a part of the forget set D¢, then the following loss is computed:

Ly <« L(M(x;; ¢),B(x;; 0)); Vx; € Dy

Source: Deep Regression Unlearning, Ayush K Tarun, Vikram S Chundawat, Murari
P ; Mandal, Mohan Kankanhalli; [Submitted on 15 Oct 2022 (v1), last revised 31 May 2023. Published
age : 9 in 4oth International Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR 202,
2023. Copyright 2023 by the author(s).


https://arxiv.org/abs/2210.08196v1

Blind-Spot Unlearning (Cont.)

[ Finally, we optimize the closeness of activations (Micaelli & Storkey, 2019) between the
last k layers of model M and B on the forget set Dy

k
Lyiin €A 2 IIact](.b —act?ll
=1

J
J where act](.b and act]e corresponds to the jth layer of activation map in the original

model M and blindspot model B. 4 is a parameter used to control the relative degree of
significance of the loss terms.

[ The final loss is computed as:
I. é (1 - l;')Lr +l;'(Lf +Lattn)
J where l} = 1 for samples in the forget set and l} = 0 otherwise.

Source: Deep Regression Unlearning, Ayush K Tarun, Vikram S Chundawat, Murari
i Mandal, Mohan Kankanhalli; [Submitted on 15 Oct 2022 (v1), last revised 31 May 2023. Published
Page : 10 in 4oth International Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR 202,
2023. Copyright 2023 by the author(s).


https://arxiv.org/abs/2210.08196v1

Gaussian Amnesiac Unlearning

[ In this method, the label of a sensitive data is replaced with an incorrect label.

[ The incorrect labels are sampled from a Gaussian distribution instead of random
assignment.
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Source: Deep Regression Unlearning, Ayush K Tarun, Vikram S Chundawat, Murari
Mandal, Mohan Kankanhalli; [Submitted on 15 Oct 2022 (v1), last revised 31 May 2023. Published
in 4oth International Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR 202,
2023. Copyright 2023 by the author(s).



https://arxiv.org/abs/2210.08196v1

Gaussian Amnesiac (Cont.)

J M(.,P) € Pre-Trained Model

. D < Original Dataset

J D’ & Modified Dataset with wrong Forget Labels

fori=1,273,..,n
for (x;,y;) € D’
J’fmd = M(x;, D)

Ly = L (Y™ i)

Source: Deep Regression Unlearning, Ayush K Tarun, Vikram S Chundawat, Murari
P . 12 Mandal, Mohan Kankanhalli; [Submitted on 15 Oct 2022 (v1), last revised 31 May 2023. Published
Hef= in 4oth International Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR 202,
2023. Copyright 2023 by the author(s).


https://arxiv.org/abs/2210.08196v1

Results and Findings

: . . : Gaussian :
Forget Set Metric Original Retrained _ BlindSpot
Amnesiac
0-30 W_Distance(1) 6.3929 : 0.6148 3.4921
60 - 101 W_Distance(1) 8.7661 - 1.6962 1.9200

To measure the similarity between output distributions of different models we will use 1ST
WASSERSTEIN DISTANCE

Wi(p,q) = inf z —y|dy(z,y)
vel'(p,9) JRxR

Ramdas, A., Garc'ia Trillos, N., and Cuturi, M. On wasserstein two-sample testing
and related families of nonparametric tests. Entropy, 19(2):47, 2017.




Results and Findings

» Exact Unlearned Model (Trained on 100 epochs)

Evaluating Exact Unlearn Model on Retain Data : {Loss : 9.8752}
Evaluating Exact Unlearn Model on Forget Data : {Loss : 20.4281}

P G-A Unlearned Model (Trained on 5 epochs)

Evaluating G-A Unlearned Model on Retain Data : {Loss : 9.6447}
Evaluating G-A Unlearned Model on Forget Data : {Loss : 20.78454}

» BLSP Unlearned Model (Trained on 2 + 5 epochs)

Evaluating Blspt Unlearn Model on Retain Data : {Loss : 9.8752}
Evaluating Blspt Unlearn Model on Forget Data : {Loss : 18.85484}

Page : 14
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