Dataset

Mapping The Random Variable

 $|p(x)\Delta x| = |P(z)\Delta z|$ p(x) = P(z)|d(z)/d(x)| log(p(x)) = log(P(z)) + log(|d(z)/d(x)|)

What is Normalizing Flow?

Deep Learning based method to map a one distribution to another one.

The random variable is mapped from one space to another using a series of bijective functions.

How Does It Work?

 $z \sim P(z) = N(z;0,1)$

 $x = f(z) = f_1 \dots f_n(z)$

f: Z — X , f is invertible.

Can we say : $P_{\odot}(x) = P_{\odot}(f^{-1}(x))$?

The answer is **No**.

Change Of Variables Formula: $P_{\odot}(x) = P_{\odot}(f^{-1}(x)) |det(\partial(f^{-1}(x))/\partial(x))|$

 $=> P_{\odot}(x) = P_{\odot}(z) |\det(\partial(z)/\partial(x))|$

Jacobian Determinant

What does the determinant of Jacobian Signify?

1. The previous equation shows the probability of x is equal to the probability of z multiplied by a scalar constant.

2. A probability distribution function must always integrate to 1.

3. The Jacobian determinant signifies how much the transformation contracts or expands a space.

4. This factor ensures that the new density function of x also satisfies the requirement of x.

Note : $|det(\partial(z)/\partial(x))| = |1/det(\partial(x)/\partial(z))|$

Another Note:

The orientation of the space is of no consequence because we are taking into account the magnitude of the determinant.

Log-Likelihood

 $\mathsf{P}_{\odot}(\mathsf{x}) = \mathsf{P}_{\odot}(\mathsf{z}) \, \boldsymbol{\Pi} \left| \det(\partial(\mathsf{f}_{\mathsf{i}}^{-1}) / \partial(\mathsf{x})) \right|$

Taking Logarithm on both sides:

 $\log (P_{\odot}(x)) = \log (P_{\odot}(z)) + \sum \log (|\det(\partial(f_i^{-1})/\partial(x))|)$

The final objective is to maximise $\log (P_{\Theta}(x))$.

Applications

Normalizing flows can be used to generate new data based on the training data. For generative models we typically assume:

z to be the latent variables

(We assume the latent variables to be sampled from a normal distribution)

x to be the observed variables.

maximise (log ($P_{\odot}(z)$) + $\Sigma \log \left(\left| \det(\partial(f_i^{-1})/\partial(x)) \right| \right)$

Latent variables sampled from a normal distribution

Model we want to train

Types of Normalizing Flows

- 1. Planar Flows : Expands or contracts the distribution along a specific direction.
- 2. Radial Flows : Modifies the distribution along a certain point.
- 3. Residual Flows : These use mapping functions like g(x) = x + F(x)

Case Study : VITS(TTS Model)

VITS stand for *Conditional Variational AutoEncoder With Adversarial Training.*

Normalizing Flow finds an application over there, in mapping the simple prior distribution into a more complex distribution to improve expresiveness.

$$p_{\theta}(z|c) = N(f_{\theta}(z); \mu_{\theta}(c), \sigma_{\theta}(c)) \Big| \det \frac{\partial f_{\theta}(z)}{\partial z} \Big|,$$
$$c = [c_{text}, A]$$

Architecture of VITS

Thank You