Reminder:
Bag of Words (BOW)

| hate this movie

| | | |
[Iookupj (Iookup) Oookup) [Iookup) weights score
v v v

@ 2
+ + + @ °9 = o
@ o

Features 7 are based on word identity, weights w learned

Which problems mentioned betore would this solve?

Whats I\/Ilssmg in BOW?

' . Handllng of con/ugaated or com,oouno’ words - Subword
_* llove this move -> | loved this movie Models
* Handling of word similarity
* | love this move -> | adore this movie
+ Handling of combination features
"1 * | love this movie -> | don’t love this movie Neural
, Networks
* | hate this movie - >I don t hate th|s mowe -
| Sequence

Models

Subword Models

Basic |dea

e Split less common words into multiple subword tokens

the companies are expanding

!

the compan _ies are expand _ing

e Benefits:

* Share parameters between word variants,
compound words

 Reduce parameter size, save compute+memory

Byte Pair Encoding
(Sennrich+ 2015)

* Incrementally combine together the most frequent token pairs

{'"lTow</w>':5, '"Llower</w>':2, 'newest</w>':6, 'widest«</w>": 3}

pairs = get_stats(vocab)

[(('e', 's"), 9), (('s', 't'), 9), (('t', '</w>"), 9), (('w', 'e'), 8), (('l', 'o'), 7),

vocab = merge_vocab(pairs[0], vocab)

{"lTow</w>':5, '"Llower</w>':2, 'newest</w':6, 'widest«</w>": 3}

pairs = get_stats(vocab)

[(('es', 't"), 9), (('t', '</w>'), 9), (('L', 'o"), 7), (('0', 'w"), 7), (('n', 'e'), 6)]

vocab = merge_vocab(pairs[0], vocab)

{"low</w>':5, '"Lower</w>':2, 'newest </w>':6, 'widest</w>"': 3}

Example code:
https://github.com/neubig/anlp-code/tree/main/02-subwords

https://github.com/neubig/anlp-code/tree/main/02-subwords

Unigram Models
(Kudo 2018)

 Use a unigram LM that generates all words in the
sequence independently (more next lecture)

* Pick a vocabulary that maximizes the log likelihood
of the corpus given a fixed vocabulary size

* Optimization performed using the EM algorithm
(details not important for most people)

* Find the segmentation of the input that maximizes
unigram probability

SentencePlece

* A highly optimized library that makes it possible to
train and use BPE and Unigram models

% spm train --input=<input> \
-—-model prefix=<model name>
-—-vocab s1ze=8000 --character coverage=1.0

-—-model type=<type>

o\°

spm _encode --model=<model file>
—output format=pilece < 1nput > output

* Python bindings also available

hitps://github.com/google/sentencepiece

https://github.com/google/sentencepiece

Subword Considerations

* Multilinguality: Subword models are hard to use
multilingually because they will over-segment less
common languages naively (Acs 2019)

* Work-around: Upsample less represented
languages

- Arbitrariness: Do we do “es t” or “e st”?

Work-around: “Subword regularization” samples
different segmentations at training time to make
models robust (Kudo 2018)

Continuous Word
Embeadings

Basic |dea

* Previously we represented words with a sparse vector
with a single “1" — a one-hot vector

e Continuous word embeddings look up a dense vector

One-hot Representations Dense Representations
| hate this movie | hate this movie
| | | | | | | |
Oookup} Oookup) Oookup) Oookup) Oookup) Oookup) Oookup) Oookup)
% { ! {
&

Continuous Bag of Words
(CBOW)

hate this movie

Cookup) (1ookup) (1ookup | [Tockup

+ + +

PN r

2 b < b <

& - b <

W |8 + @ = @
=

2 - b <

bias scores

What do Our Vectors Represent?

 No guarantees, but we hope that:

 Words that are similar (syntactically, semantically,
same language, etc.) are close in vector space

« Each vector element is a features (e.g. is this an
animate object? is this a positive word, etc.)

great
. ¥ excellent
angel L .
. # sun :
o Shown in 2D, but
cat basket in reality we use
dOgEE : 512, 1024, etc.

bad disease

e b b
> b

monster & % 2

A Note: "Lookup”

* Lookup can be viewed as “grabbing” a single
vector from a big matrix of word embeddings

num. words
vector 9900000 2
Size o [L2 2 S b4
R (SR TR R [TR b4
lookup(2) %
\ /

e Similarly, can be viewed as multiplying by a “one-

hot” vector
num. words /O\

O N

1 b <

L o [IS [TR x 0 —>
R (SR TR R [TR \O/ b4
h_d

e Former tends to be faster

Training a More Complex
Model

Reminder: Simple Training of BOW Models

 Use an algorithm called “structured perceptron”

feature weilghts = {}
for x, yv in data:

features = extract features (x)
predicted y = run classifier (features)

if predicted y != y:
for feature in features:
feature weilghts[feature] = (
feature welghts.get (feature, 0) +
y * features|[feature]

Full Example:
https://github.com/neubig/anlp-code/tree/main/01-simpleclassifier

https://github.com/neubig/anlp-code/tree/main/01-simpleclassifier

How do we [rain More
Complex Models?

 We use gradient descent
* Write down a /loss function

e (Calculate derivatives of the loss function wrt the
parameters

* Move Iin the parameters In the direction that
reduces the loss function

| 0SS Function

e A value that gets lower as the model gets better

 Examples from binary classification using score s(x)
Hinge Loss Sigmoid + Negative Log Likelihood

1
1+ e—(yxs)

¢ = max(—y * S) o(y *5) = { = —logo(y *s)

—— max(y *s, 0) | —— —log sig(y *s)

—i
max(y*s, 0)
o [N w RS
log sig(y * s)
o = N w

! —1) Ll I
-2 0 2 -2 0 2
s
S
4 T Po— -
—— max(y*s,0) 3 - —log sig(y * s)
3 7
—_1 w2 > 2
- > =)
x 1 LA
£ 2
0 - 0 -
_1 T
—1 L I 1
=2 2 -2 0 2

S

S

more closely linked to acc probabillistic interpretation, gradients everywhere

Calculating Derivatives

e Calculate the derivative of the parameter given the loss function

 Example from BOW model + hinge loss

Omax (0, —y * ZLW w;freq(v;, v)) _
Owi

—y - freq(v;, x) if —y- Zivl wifreq(v;,) > 0
0 otherwise

Optimizing Gradients

e Standard stochastic gradient descent does

gt = Ve, L(0:_1)

Gradient of Loss

0y =01 — Qgt

Learning Rate

* There are many other optimization options! (see
Ruder 2016 in references)

What is this Algorithm?

feature weights = {}
for x, yv in data:

features = extract features (x)
predicted y = run classifier (features)

if predicted y != y:
for feature in features:
feature weilghts[feature] = (
feature weights.get (feature, 0) +
y * features[feature]

* Loss function: Hinge Loss

* Optimizer: SGD w/ learning rate 1

Combination Features

Combination Features

good
| don't love this movie — neutral

There’s nothing | don't / n%%?%

love about this movie bad
very bad

Basic |dea of Neural Networks
(for NLP Prediction Tasks)

hate this movie

B0 (@) B0 @)

-

o

some complicated
function to extract
combination features
(neural net)

scores

—
probs

J

@oﬁmaxj_E

What do Our Vectors
Represent?

 Each vector has “teatures” (e.Q. Is this an animate
object? is this a positive word, etc.)

e \WWe sum these features, then use these to make
oredictions

» Still no combination features: only the expressive
power of a linear model, but dimension reduced

N
b <
b4
b <

hate

}

=i

b <
b <
b <

e

Deep CBOW

this movie

}

!

N

b <
b4
b <

b d

> <

W > <

> <

W2"h + b2

g Itanh(

)

bias

scores

What do Our Vectors
Represent?

* Now things are more interesting!

 \We can learn feature combinations (a node in the

second layer might be “feature 1 AND feature 5 are
active”)

* e.g. capture things such as "not” AND “hate”

What is a Neural Net?:
Computation Graphs

"Neural” Nets

Original Motivation: Neurons in the Brain

Current Conception: Computation Graphs

f(l'l,I'Q,ZCg) — Zmz

Image credit: Wikipedia

expression:
X

graph:

A node is a {tensor, matrix, vector, scalar} value

®

An edge represents a function argument
(and also an data dependency). They are just
pointers to nodes.

A node with an incoming edge is a function of

that edge’s tail node.

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)

OF
(u)

times a derivative of an arbitrary input ;.

flu)=u' Of(u) OF :(OF)T
ou 9f(u) \9f(u)

expression:
x' A

graph:

Functions can be nullary, unary,
binary, ... n-ary. Often they are unary or binary.

f(U, V) =4V

f(u)=u' /O\@

expression:
x| Ax

graph:

f(M,v) =Mv

f(U, V) gg

Computation graphs are directed and acyclic (in DyNet)

expression:
x| Ax

graph:

expression:
x'Ax+b-x+c

graph:

expression:
y=xAx+b-x+c

graph:

variable names are just labelings of nodes.

Algorithms (1)

- Graph construction

- Forward propagation

* In topological order, compute the value of the
node given its inputs

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Algorithms (2)

- Back-propagation:

* Process examples in reverse topological order

» Calculate the derivatives of the parameters with

respect to the final value
(This is usually a “loss function”, a value we want

to minimize)
- Parameter update:

 Move the parameters in the direction of this

derivative
W -=a * dl/dW

Back Propagation

graph:

Concrete Implementation
Examples

Neural Network Frameworks

PYTHRCH .

/4

7 46

oy
TensorFlow Qeef™efe

Developed by FAIR/Meta Developed by Google
Most widely used in NLP Used in some NLP projects
Favors dynamic execution Favors definition+compilation

More flexibility Conceptually simple parallelization

Most vibrant ecosystem

Basic Process In Neural
Network Frameworks

e Create a model

 [For each example

create a graph that represents the computation
you want

calculate the result of that computation

f training, perform back propagation and
update

Bag of Words (BOW)

| hate this movie

| | | |
Gookup] Gookup] Gookup] Gookup] bias scores

&
+ + + + @ =

—
b <

probs

[Soﬁmaxj_E

https://github.com/neubig/anlp-code/tree/main/02-textclass

https://github.com/neubig/anlp-code/tree/main/02-textclass

Continuous Bag of Words
(CBOW)

hate this movie

Cookup) (1ookup) (1ookup | [Tockup

+ + +
a2 b < b <
@& b < -
\ﬁV’ b < + —
2 b < b <
‘- b < -

bias scores

https://github.com/neubig/anlp-code/tree/main/02-textclass

https://github.com/neubig/anlp-code/tree/main/02-textclass

P

-
-
b <

hate

}

=i

b <
—
b <

e

Deep CBOW

this

}

N

b <

-+ =

lcain N

b <

S

b <

e

|

movie

!

P

-
-
b <

b d

tanh(tanh(
h+b 2h+b2

o=

> <
> <
> <

LA

bias scores

https://github.com/neubig/anlp-code/tree/main/02-textclass

https://github.com/neubig/anlp-code/tree/main/02-textclass

A Few More Important
Concepts

A Better Optimizer: Adam

 Most standard optimization option in NLP and beyond
« Considers rolling average of gradient, and momentum
my = Bime—1 + (1 — B1)9: Momentum
vy = BaUs—1 + (1 — 52)% © g+ Rolling Average of Gradient

» Correction of bias early in training
my . Ut

TGt ' 1— (B

 Final update

A

Uz

Visualization of Embeddings

* Reduce high-dimensional embeddings into 2/3D
for visualization (e.g. Mikolov et al. 2013)

Country and Capital Vectors Projected by PCA
2 T T T

" China<- -
Beijing
1.5 | Russia
Japan
1L Moscow)
Turkey: Ankara "Tokyo
05 |
Poland
0 Germany
France Warsaw
- —Berlin
0.5 |- Italy- Paris
- Athens
Greece:
1 Spain Rome
-1.5 | Portugal Lisbd?fadnd
-2

I ! ! ! ! I !
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Non-linear Projection

* Non-linear projections group things that are close in high-
dimensional space

* e.g. SNE/t-SNE (van der Maaten and Hinton 2008) group things
that give each other a high probability according to a Gaussian

First and second Principal Components colored by digit tSNE dimensions co lored by digit

PCA t-SNE

XXXXXX

(Image credit: Derksen 2016)

t-SNE Visualization can be
I\/\is\eading! (Wattenberg et al. 2016)

e Settings matter

',
Lo * @ i
.
- * { g %o~
y | e
w N,
e T
Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplex ity: 50 Perplexity: 100
S 5,000 S 5,000 S 5,000 S 5,000 Step: 5,000

-
~" S &o ‘i.f
.) "‘
’-' ’. e, i
:‘-‘ * 3’.‘3*‘ -’ .'\lh X
-
b ' y, 4 #
\ . 3 N
L - %
- 2 .“h
Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100

Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000

Any Questions”

(sequence models in next class)

