
Deep Learning with MNIST and SVHN Datasets

Sanmitra Sur
B2330037

M.Sc. Computer Science and Big Data Analytics

March 16, 2025

Contents

1 Introduction 3
1.1 Objective . 3
1.2 Datasets Used . 4
1.3 Methodology Overview . 4
1.4 Additional Contributions . 4
1.5 Report Structure . 5

2 Dataset Loading and Preprocessing 6
2.1 Dataset Description . 6
2.2 Data Preprocessing . 6
2.3 Class Distribution in Training, Validation, and Test Sets 6

2.3.1 MNIST Class Distributions . 6
2.3.2 SVHN Class Distributions . 7

2.4 Dataset Visualization . 7
2.4.1 MNIST Samples . 8
2.4.2 SVHN Samples . 9
2.4.3 Comparison Between MNIST and SVHN 9

3 Building and Training the CNN Model 11
3.1 CNN Architecture . 11
3.2 Training Setup . 11
3.3 Hyperparameter Tuning and Best Configuration 11

3.3.1 Best Configuration for MNIST . 11
3.3.2 Best Configuration for SVHN . 12

3.4 Training Results and Analysis . 12
3.5 Analysis of Training Curves . 13

3.5.1 MNIST Analysis . 13
3.5.2 SVHN Analysis . 13

4 Model Evaluation and Visualization 14
4.1 Classification Reports . 14
4.2 Confusion Matrices . 15
4.3 Sample Predictions and Misclassifications 15

1

4.4 Softmax Confidence Scores . 16
4.5 Analysis and Observations . 16

5 Dimensionality Reduction and Clustering Analysis 18
5.1 UMAP for Feature Visualization . 18

5.1.1 UMAP of MNIST Test Features (FC Layer Output) 18
5.1.2 UMAP of SVHN Test Features (FC Layer Output) 19
5.1.3 Cross-Dataset UMAP Visualization: SVHN Model on MNIST . . 19
5.1.4 Cross-Dataset UMAP Visualization: MNIST Model on SVHN . . 20

5.2 Cross-Dataset Evaluation . 21
5.2.1 Classification Report: SVHN Model on MNIST 21
5.2.2 Classification Report: MNIST Model on SVHN 21
5.2.3 Misclassified Examples: MNIST Model on SVHN 22
5.2.4 Misclassified Examples: SVHN Model on MNIST 22
5.2.5 Critical Observations . 23

6 Imbalanced Class Training and Analysis 24
6.1 Class Imbalance in MNIST . 24

6.1.1 Training Results for MNIST Imbalanced Training 24
6.1.2 UMAP Visualization of MNIST Feature Representations 24

6.2 Class Imbalance in SVHN . 25
6.2.1 Training Results for SVHN Imbalanced Training 25
6.2.2 UMAP Visualization of SVHN Feature Representations 25

6.3 Effect of Imbalance on Model Performance 26

7 Conclusion and Future Work 27
7.1 Summary of Key Findings . 27
7.2 Challenges Faced . 27
7.3 Potential Improvements and Future Directions 27
7.4 Final Thoughts . 28

2

Abstract

This study investigates the application of Convolutional Neural Networks
(CNNs) for digit classification using the MNIST and SVHN datasets, empha-
sizing model performance, generalization, and interpretability. A structured deep
learning pipeline is implemented in PyTorch, covering data preprocessing, model
architecture design, hyperparameter tuning, and extensive evaluation.

The trained CNN achieves 99.02% accuracy on MNIST, demonstrating
strong feature extraction capabilities in a well-structured handwritten digit dataset.
On SVHN, the model attains 88.99% accuracy, highlighting challenges posed by
real-world variations such as background noise, lighting conditions, and digit dis-
tortions. Cross-dataset evaluation reveals a severe drop in performance, with
the MNIST-trained model achieving only 7.15% accuracy on SVHN, whereas
the SVHN-trained model shows better generalization with 58.81% accuracy on
MNIST. This discrepancy underscores the challenges of domain adaptation and
dataset complexity differences.

Further analysis using UMAP-based dimensionality reduction illustrates
the separability of learned feature embeddings across datasets, revealing overlap-
ping clusters in SVHN due to intra-class variance. Classification reports, confu-
sion matrices, and misclassified examples expose systematic errors, particularly in
digit pairs with high visual similarity. Additionally, the study explores class im-
balance effects, showing that highly skewed training distributions degrade model
performance and feature separability.

The findings suggest that data augmentation, transfer learning, and do-
main adaptation techniques could enhance model robustness, particularly for
real-world datasets like SVHN. Future work will focus on leveraging attention
mechanisms and adversarial training to improve classification accuracy under
domain shifts and class imbalance scenarios.

1 Introduction

Deep learning has revolutionized the field of computer vision, enabling efficient and accu-
rate classification of visual data. This assignment focuses on building and evaluating Con-
volutional Neural Networks (CNNs) for digit classification using two widely used datasets:
the Modified National Institute of Standards and Technology (MNIST) dataset
and the Street View House Numbers (SVHN) dataset. These datasets serve as
benchmarks in deep learning research, allowing us to assess the performance of CNN
models under different data distributions.

1.1 Objective

The primary objective of this assignment is to develop a deep learning pipeline from
scratch using PyTorch. The pipeline involves:

• Loading and preprocessing of the MNIST and SVHN data sets.

• Designing and training a CNN model tailored for digit classification.

• Evaluating model performance using accuracy, precision, recall, and loss metrics.

• Analyzing misclassified samples and interpreting model behavior.

3

• Visualizing learned feature representations using dimensionality reduction tech-
niques.

• Investigating the effects of imbalanced class training.

• Conducting cross-dataset evaluations to assess model generalization.

1.2 Datasets Used

MNIST: A dataset of grayscale images containing handwritten digits (0-9) with a reso-
lution of 28× 28. It consists of 60,000 training images and 10,000 test images.

SVHN: A real-world dataset of color images capturing house numbers from Google
Street View. Each image contains a single digit, but the dataset has greater variability
due to different lighting conditions, backgrounds, and image quality. The dataset provides
over 73,000 training images and 26,000 test images.

1.3 Methodology Overview

This project follows a structured approach, outlined in the following steps:

1. Data Preparation: Load the MNIST and SVHN datasets, normalize pixel values,
and split them into training (70%), validation (10%), and test (20%) sets.

2. CNN Model Design: Implement a CNN architecture with convolutional lay-
ers, batch normalization, ReLU activation, max-pooling layers, and fully connected
layers.

3. Hyperparameter Tuning: Experiment with different optimizers, learning rates,
batch sizes, and activation functions to determine the optimal model configuration.

4. Training and Evaluation: Train the model on both datasets for 50 epochs,
analyze validation and test set performance, and visualize the learning process.

5. Model Interpretability: Investigate misclassified examples, plot confusion ma-
trices, and visualize probability distributions.

6. Dimensionality Reduction: Use UMAP (Uniform Manifold Approximation and
Projection) to visualize latent feature representations.

7. Cross-Dataset Evaluation: Test the MNIST-trained model on SVHN and vice
versa to analyze generalization performance.

8. Imbalanced Class Training: Train models on class-imbalanced subsets and eval-
uate how imbalance affects classification performance.

1.4 Additional Contributions

Beyond the assignment requirements, the following additional analyses were conducted:

• Extensive Hyperparameter Tuning: A comprehensive grid search was per-
formed over multiple optimizers (SGD, Adam), learning rates, and activation func-
tions (ReLU, LeakyReLU) to identify the best-performing configuration.

4

• UMAP-Based Analysis: Detailed visualization of feature clustering for different
datasets and training settings.

• Cross-Dataset Experiments: Evaluating how models trained on one dataset
generalize to the other.

1.5 Report Structure

The remainder of this report is structured as follows:

• Section 2 covers dataset preprocessing and visualization.

• Section 3 details the CNN architecture and training process.

• Section ?? presents model performance analysis and error interpretation.

• Section 5 discusses UMAP-based dimensionality reduction and feature visualization.

• Section 5.2 explores cross-dataset evaluation.

• Section 6 examines the impact of imbalanced training on model performance.

• Section 7 summarizes findings and suggests future improvements.

Through this structured approach, this report aims to provide a comprehensive anal-
ysis of CNN-based digit classification using MNIST and SVHN while investigating model
robustness, interpretability, and performance under different settings.

5

2 Dataset Loading and Preprocessing

2.1 Dataset Description

This study employs two widely used benchmark datasets for digit classification:

• MNIST: A dataset of handwritten digits (0-9), where each grayscale image has a
resolution of 28×28 pixels. The dataset contains 60,000 training images and 10,000
test images.

• SVHN: A dataset of real-world street view house numbers, where each image is a
32× 32 RGB color image containing a single digit. The dataset includes more than
73,000 training images and 26,000 test images.

Both datasets are used to train and evaluate convolutional neural networks (CNNs)
for digit classification.

2.2 Data Preprocessing

To ensure consistency across the datasets, the following preprocessing steps were applied:

1. Normalization: Pixel values were scaled to the range [0,1] using division by 255.

2. Grayscale Conversion: SVHN images were converted to grayscale when used
with models trained on MNIST to maintain uniformity in input channels.

3. Dataset Splitting: Both datasets were split into training (70%), validation (10%),
and test (20%) sets for robust evaluation.

2.3 Class Distribution in Training, Validation, and Test Sets

The distribution of classes in the training, validation, and test sets was analyzed to ensure
balanced data splits. The following plots illustrate the class distributions for MNIST and
SVHN datasets.

2.3.1 MNIST Class Distributions

(a) Training Distribution (b) Validation Distribution (c) Testing Distribution

Figure 1: MNIST Class Distributions Across Training, Validation, and Test Sets

From Figure 1, we observe that:

6

• The MNIST dataset is fairly balanced across all digit classes (0-9) in the training,
validation, and test sets.

• The class frequencies are nearly uniform, ensuring that no particular digit is over-
represented or underrepresented.

• The validation and test sets maintain the same distribution patterns as the training
set, which helps in evaluating the model on a well-balanced dataset.

This balance in class distribution suggests that the model training will not suffer from
class imbalance issues when trained on MNIST.

2.3.2 SVHN Class Distributions

(a) Training Distribution (b) Validation Distribution (c) Testing Distribution

Figure 2: SVHN Class Distributions Across Training, Validation, and Test Sets

From Figure 2, we note the following observations:

• Unlike MNIST, the SVHN dataset has a **noticeable class imbalance** across all
splits.

• The digit ‘1’ is the most frequent class, significantly outnumbering other digits.

• Digits such as ‘0’, ‘6’, ‘8’, and ‘9’ appear far less frequently in the dataset,
indicating an inherent skew.

• This class imbalance could impact model performance, potentially causing bias
toward the more frequent classes (e.g., ‘1’) while underperforming on less frequent
digits.

Given this imbalance, data augmentation, weighted loss functions, or class
rebalancing techniques might be needed to mitigate potential bias in SVHN model
training.

2.4 Dataset Visualization

To better understand the characteristics of the datasets, we visualize two sample images
per class from the training, validation, and test splits of both MNIST and SVHN. The
figures below provide insights into the dataset quality, variations in digit representation,
and potential preprocessing challenges.

7

(a) Training Samples (b) Validation Samples (c) Testing Samples

Figure 3: MNIST Dataset Visualization

2.4.1 MNIST Samples

MNIST consists of grayscale images with handwritten digits (0-9). From the visualiza-
tion, we can observe the following characteristics:

• The dataset contains well-structured handwritten digits with slight variations in
stroke style and thickness.

• The digits are centered and occupy a majority of the image space, making them
well-suited for convolutional neural networks (CNNs).

• Different handwriting styles introduce some variations in character appearance,
which can challenge model generalization.

8

2.4.2 SVHN Samples

(a) Training Samples (b) Validation Samples (c) Testing Samples

Figure 4: SVHN Dataset Visualization

SVHN contains RGB images of digits extracted from house number plates in real-
world scenarios. The key observations from the visualization are:

• The dataset exhibits significant variation in illumination, background clutter,
and font styles.

• Some digits are partially occluded or blurred, making recognition more challeng-
ing compared to MNIST.

• Unlike MNIST, SVHN digits are not centered, and additional noise from neighbor-
ing digits or objects may affect model performance.

2.4.3 Comparison Between MNIST and SVHN

While both datasets contain digits, their differences highlight the importance of domain
adaptation:

• MNIST is a well-structured, noise-free dataset, making it ideal for benchmarking
simple models.

9

• SVHN represents real-world challenges with varying conditions, making it a more
complex data set for the classification of digits.

• The transition from MNIST to SVHN requires adapting the model to handle
color images, variations in size, alignment, and background noise.

Understanding these differences is crucial for evaluating model generalization across
domains.

10

3 Building and Training the CNN Model

3.1 CNN Architecture

The Convolutional Neural Network (CNN) model used for digit classification consists of
the following layers:

• Convolutional Layers: Two convolutional layers with kernel size 3×3 and ReLU
activation.

• Batch Normalization: Normalization layers after each convolution to stabilize
training.

• Max-Pooling Layers: Two 2×2 max-pooling layers to reduce spatial dimensions.

• Fully Connected Layer: A dense layer for classification into 10 classes.

For MNIST, the model is designed for grayscale (1-channel) 28×28 images, while
for SVHN, it is adapted to RGB (3-channel) 32×32 images.

3.2 Training Setup

To optimize model performance, the following training setup was used:

• Loss Function: Cross-Entropy Loss, suitable for multi-class classification.

• Optimizers: Experiments were conducted with SGD and Adam optimizers.

• Learning Rates: Tested values include 0.001, 0.005, and 0.0005.

• Batch Sizes: 64 and 128 were considered for efficient gradient updates.

• Activation Functions: ReLU and LeakyReLU were compared.

• Early Stopping: Used to prevent overfitting based on validation loss.

3.3 Hyperparameter Tuning and Best Configuration

Grid search was performed over multiple configurations, and the best performing hy-
perparameters were selected based on validation loss and accuracy.

3.3.1 Best Configuration for MNIST

• Batch Size: 128

• Optimizer: SGD

• Learning Rate: 0.005

• Activation Function: ReLU

• Validation Loss: 0.0349

• Validation Accuracy: 99.03%

11

3.3.2 Best Configuration for SVHN

• Batch Size: 128

• Optimizer: SGD

• Learning Rate: 0.005

• Activation Function: ReLU

• Validation Loss: 0.3913

• Validation Accuracy: 88.99%

3.4 Training Results and Analysis

The training curves for accuracy and loss across epochs are presented below.

(a) MNIST Accuracy Curve (b) MNIST Loss Curve

Figure 5: Training Performance on MNIST Dataset

(a) SVHN Accuracy Curve (b) SVHN Loss Curve

Figure 6: Training Performance on SVHN Dataset

12

3.5 Analysis of Training Curves

3.5.1 MNIST Analysis

From Figure 5, we observe that:

• The training and validation accuracy curves show a steady increase, with the
validation accuracy reaching 99%.

• The loss curve exhibits a smooth downward trend, indicating proper convergence.

• Minimal overfitting is observed as validation performance remains consistent with
training performance.

These results confirm that the CNN effectively learns MNIST digit representations
with high generalization performance.

3.5.2 SVHN Analysis

From Figure 6, we note the following:

• The accuracy curve increases steadily but plateaus around 89% validation accu-
racy, suggesting a higher dataset complexity compared to MNIST.

• The loss curve exhibits more fluctuations, indicating a greater challenge in
optimization due to SVHN’s real-world variations.

• Unlike MNIST, slight overfitting is observed as training accuracy continues improv-
ing while validation accuracy stabilizes.

These results highlight that SVHN is a more complex dataset due to background
noise and color variations, requiring possible data augmentation or deeper architec-
tures to improve performance.

13

4 Model Evaluation and Visualization

After training the models on both the MNIST and SVHN datasets, we evaluate their
performance using classification reports, confusion matrices, and sample predictions. The
results are analyzed in terms of accuracy, precision, recall, and F1-score.

4.1 Classification Reports

The classification report provides a detailed analysis of the model’s performance for each
class. The precision, recall, and F1-score metrics help in understanding the strengths and
weaknesses of the model.

Classification Report for MNIST:

precision recall f1-score support

0 0.9957 0.9943 0.9950 1409

1 0.9953 0.9933 0.9943 1492

2 0.9909 0.9909 0.9909 1433

3 0.9901 0.9852 0.9876 1420

4 0.9852 0.9887 0.9869 1412

5 0.9843 0.9909 0.9876 1204

6 0.9903 0.9955 0.9929 1328

7 0.9913 0.9867 0.9890 1508

8 0.9852 0.9859 0.9855 1347

9 0.9848 0.9834 0.9841 1447

accuracy 0.9894 14000

macro avg 0.9893 0.9895 0.9894 14000

weighted avg 0.9894 0.9894 0.9894 14000

Classification Report for SVHN:

precision recall f1-score support

0 0.8872 0.8998 0.8934 1337

1 0.9262 0.9290 0.9276 3758

2 0.9222 0.9135 0.9178 2947

3 0.8371 0.8619 0.8493 2266

4 0.9104 0.9090 0.9097 1979

5 0.8221 0.8951 0.8571 1926

6 0.8748 0.8153 0.8440 1603

7 0.9184 0.9054 0.9119 1491

8 0.8636 0.8139 0.8380 1338

9 0.8742 0.8526 0.8632 1214

accuracy 0.8884 19859

macro avg 0.8836 0.8795 0.8812 19859

weighted avg 0.8890 0.8884 0.8884 19859

14

4.2 Confusion Matrices

Confusion matrices provide a visual representation of the model’s performance by showing
the number of correct and incorrect predictions for each class. The diagonal values
represent correct classifications, while off-diagonal values indicate misclassifications.

(a) Confusion Matrix for MNIST (b) Confusion Matrix for SVHN

Figure 7: Confusion matrices for MNIST and SVHN.

4.3 Sample Predictions and Misclassifications

To better understand the model’s behavior, we visualize correctly classified and misclas-
sified examples. The first set of images shows cases where the model made incorrect
predictions.

(a) Misclassified Examples (MNIST)

15

(a) Misclassified Examples (SVHN)

Figure 9: Misclassified examples for MNIST and SVHN datasets

Next, we visualize correct predictions along with their corresponding confidence scores
using softmax probabilities.

4.4 Softmax Confidence Scores

(a) Softmax Probabilities for MNIST Samples

(b) Softmax Probabilities for SVHN Samples

Figure 10: Softmax probability distribution for correctly classified examples in a 1 × 3
grid.

4.5 Analysis and Observations

MNIST Performance: The model achieves a very high accuracy of 98.94%. The
confusion matrix shows minimal misclassification, indicating strong generalization across

16

digit classes. The classification report confirms that precision, recall, and F1-score are
close to 1.0 for all classes.

SVHN Performance: The model achieves an accuracy of 88.84%, which is lower
than MNIST due to the complexity of real-world street number images. The confusion
matrix indicates that certain digits, such as 5 and 6, are more prone to misclassification.
The classification report further highlights a drop in recall for some classes, suggesting
that additional data augmentation or deeper models might improve performance.

Overall, the CNN model performs exceptionally well on MNIST and reasonably well
on SVHN. Further improvements can be made by optimizing hyperparameters, adding
data augmentation, or using more complex architectures such as ResNet.

17

5 Dimensionality Reduction and Clustering Analysis

Dimensionality reduction techniques help in understanding the learned feature representa-
tions of CNN models by visualizing high-dimensional data in lower-dimensional spaces. In
this section, we use Uniform Manifold Approximation and Projection (UMAP)
to analyze the learned feature spaces for MNIST and SVHN datasets.

5.1 UMAP for Feature Visualization

UMAP is a non-linear dimensionality reduction technique that preserves both local and
global structures in the data. We use UMAP to visualize the final feature representations
learned by the CNN models before classification.

5.1.1 UMAP of MNIST Test Features (FC Layer Output)

Figure 11: UMAP visualization of MNIST test set feature embeddings extracted from
the fully connected (FC) layer

Observations:

• The feature representations are well-clustered, with distinct separation between
digit classes.

• Some overlapping between similar digits (e.g., 3 and 8) is observed, but overall, the
model learns robust feature separations.

• This clear separation explains the high classification accuracy of the model on
MNIST.

18

5.1.2 UMAP of SVHN Test Features (FC Layer Output)

Figure 12: UMAP visualization of SVHN test set feature embeddings extracted from the
fully connected (FC) layer.

Observations:

• Unlike MNIST, the clusters are more scattered, with higher intra-class variance.

• Some classes still form distinct groups (e.g., 1, 0), while others exhibit significant
overlap (e.g., 5, 6, and 8).

• The variation in real-world images introduces noise, making it harder for the model
to learn distinct clusters.

5.1.3 Cross-Dataset UMAP Visualization: SVHN Model on MNIST

Figure 13: UMAP visualization of MNIST test set feature embeddings extracted using a
model trained on SVHN.

19

Observations:

• The feature representations of MNIST digits are no longer well-clustered when
extracted from a model trained on SVHN.

• While some separation exists, there is significant overlap between digit classes,
explaining the lower accuracy (58.81%) in cross-dataset evaluation.

• This highlights the difficulty of transferring knowledge from SVHN (real-world im-
ages) to MNIST (simple handwritten digits).

5.1.4 Cross-Dataset UMAP Visualization: MNIST Model on SVHN

Figure 14: UMAP visualization of SVHN test set feature embeddings extracted using a
model trained on MNIST.

Observations:

• The SVHN digit features are highly overlapped, with almost no clear separation.

• The model trained on MNIST fails to capture the complexities of SVHN digits,
resulting in poor classification accuracy (7.15%).

• The biggest challenge comes from background noise, variations in lighting, and font
styles in SVHN, which were not present in MNIST.

20

5.2 Cross-Dataset Evaluation

To further analyze cross-dataset generalization, we present classification reports and ex-
amples of misclassified digits when the models are tested on unseen datasets.

5.2.1 Classification Report: SVHN Model on MNIST

Loss: 4.8749, Accuracy: 0.5881, Precision: 0.6281, Recall: 0.5872

precision recall f1-score support

0 0.8462 0.5388 0.6584 980

1 0.7866 0.7048 0.7435 1135

2 0.5418 0.4021 0.4616 1032

3 0.5375 0.8158 0.6481 1010

4 0.3562 0.7088 0.4741 982

5 0.6121 0.7623 0.6790 892

6 0.6952 0.2547 0.3728 958

7 0.6468 0.7714 0.7036 1028

8 0.7791 0.5903 0.6717 974

9 0.4794 0.3231 0.3860 1009

5.2.2 Classification Report: MNIST Model on SVHN

Loss: 4.4792, Accuracy: 0.0715, Precision: 0.5638, Recall: 0.1066

precision recall f1-score support

0 0.3759 0.0287 0.0533 1744

1 0.6786 0.0186 0.0363 5099

2 0.6923 0.0065 0.0129 4149

3 1.0000 0.0024 0.0048 2882

4 0.2453 0.0052 0.0101 2523

5 1.0000 0.0004 0.0008 2384

6 0.3636 0.0020 0.0040 1977

7 1.0000 0.0025 0.0049 2019

8 0.0646 0.9970 0.1213 1660

9 0.2174 0.0031 0.0062 1595

21

5.2.3 Misclassified Examples: MNIST Model on SVHN

Figure 15: Examples of misclassified SVHN digits when using the MNIST-trained model

5.2.4 Misclassified Examples: SVHN Model on MNIST

Figure 16: Examples of misclassified MNIST digits when using the SVHN-trained model

22

5.2.5 Critical Observations

SVHN Model on MNIST:

• The model achieves a moderate accuracy of 58.81%, indicating partial feature
transferability.

• Certain digits such as ‘0’ and ‘1’ show relatively high precision, but recall is much
lower.

• Digit ‘4’ has a high recall (0.7088) but low precision (0.3562), suggesting frequent
misclassification.

• Digits ‘6’ and ‘9’ show significant confusion, likely due to their similar structures.

• The model lacks robust intra-class separability, leading to incorrect predictions.

MNIST Model on SVHN:

• The accuracy is extremely low at 7.15%, indicating near-random performance.

• The model completely fails to generalize to the SVHN dataset, which contains color
images with real-world noise.

• Digit ‘8’ has a recall of 0.9970 but very low precision, meaning the model overpre-
dicts this class.

• Digits ‘3’, ‘5’, and ‘7’ have perfect precision (1.0000) but very low recall, mean-
ing the model rarely predicts them.

• This highlights a severe limitation of training on simple handwritten digits without
considering real-world variations.

Key Takeaways:

• Models trained on real-world datasets (SVHN) generalize better than models
trained on artificial datasets (MNIST).

• The lack of robustness in the MNIST model suggests the need for domain adap-
tation techniques.

• Potential solutions include data augmentation, adversarial domain adapta-
tion, and pretraining on SVHN before fine-tuning on MNIST.

23

6 Imbalanced Class Training and Analysis

Imbalanced class distribution is a common issue in real-world datasets, where certain
classes have significantly fewer samples than others. This imbalance can lead to bi-
ased model predictions, favoring the majority classes while underperforming on minority
classes. In this section, we investigate the effect of class imbalance on model performance
by training CNN models under different class imbalance scenarios for both MNIST and
SVHN datasets.

6.1 Class Imbalance in MNIST

For MNIST, we train models using only digits 1 and 2 under three different imbalanced
settings:

• Case 1: Severe imbalance (50 samples of class 1, 1000 samples of class 2).

• Case 2: Moderate imbalance (500 samples of class 1, 1000 samples of class 2).

• Case 3: No imbalance (all available samples for classes 1 and 2).

6.1.1 Training Results for MNIST Imbalanced Training

The training process for different imbalance cases showed variations in convergence speed
and generalization. Below are the final test performance metrics:

• Case 1: Loss = 0.0573, Accuracy = 98.87%, Precision = 98.87%, Recall = 98.89%.

• Case 2: Loss = 0.0133, Accuracy = 99.73%, Precision = 99.73%, Recall = 99.73%.

• Case 3: Loss = 0.0060, Accuracy = 99.86%, Precision = 99.86%, Recall = 99.86%.

6.1.2 UMAP Visualization of MNIST Feature Representations

To understand how imbalanced training affects feature representations, we apply UMAP
to the test set features.

(a) Case 1 (Severe Imbalance)
(b) Case 2 (Moderate Imbal-
ance) (c) Case 3 (No Imbalance)

Figure 17: UMAP visualization of MNIST test set feature embeddings under different
class imbalance settings.

Observations:

24

• In Case 1, the feature clusters are highly overlapping, indicating poor class separa-
bility. This suggests that the model struggled to learn meaningful representations
for the underrepresented class.

• Case 2 shows improved separation, as the increased representation of class 1 helps
the model learn better class distinctions.

• Case 3 has the clearest separation, leading to superior classification performance
and minimal misclassification.

6.2 Class Imbalance in SVHN

Similar to MNIST, we train models on SVHN using only digits 1 and 2 under three
imbalance cases:

• Case 1: Severe imbalance (50 samples of class 1, 1000 samples of class 2).

• Case 2: Moderate imbalance (500 samples of class 1, 1000 samples of class 2).

• Case 3: No imbalance (all available samples for classes 1 and 2).

6.2.1 Training Results for SVHN Imbalanced Training

• Case 1: Loss = 0.9933, Accuracy = 75.60%, Precision = 81.87%, Recall = 78.18%.

• Case 2: Loss = 0.1968, Accuracy = 95.09%, Precision = 94.89%, Recall = 95.28%.

• Case 3: Loss = 0.1520, Accuracy = 97.70%, Precision = 97.66%, Recall = 97.68%.

6.2.2 UMAP Visualization of SVHN Feature Representations

(a) Case 1 (Severe Imbalance)
(b) Case 2 (Moderate Imbal-
ance) (c) Case 3 (No Imbalance)

Figure 18: UMAP visualization of SVHN test set feature embeddings under different
class imbalance settings.

Observations:

• In Case 1, class separation is poor, similar to MNIST. The minority class is un-
derrepresented in the latent space.

• Case 2 shows improvement, with more distinct class clusters.

25

• Case 3 demonstrates the clearest separation, highlighting the advantage of bal-
anced training.

6.3 Effect of Imbalance on Model Performance

Based on the results from both MNIST and SVHN:

• Severe class imbalance (Case 1) results in poor classification performance due to
inadequate representation of the minority class.

• Increasing class balance (Case 2) significantly improves precision and recall.

• Using all available data (Case 3) leads to the best performance, reinforcing the
importance of sufficient class representation during training.

• UMAP visualizations support these findings, with more balanced datasets lead-
ing to well-separated feature clusters.

These results emphasize the need for strategies like data augmentation, class
weighting, and oversampling to handle class imbalance effectively.

26

7 Conclusion and Future Work

7.1 Summary of Key Findings

In this study, we implemented and evaluated Convolutional Neural Networks (CNNs) for
digit classification using the MNIST and SVHN datasets. Through extensive experi-
ments, we explored various aspects of model performance, including training effectiveness,
cross-dataset generalization, feature representation analysis, and the impact of class im-
balance.

• The CNN model achieved high accuracy on MNIST (99.02%) and showed strong
generalization on SVHN (88.99%).

• Cross-dataset evaluation revealed that a model trained on MNIST performs
poorly on SVHN (7.15% accuracy), whereas a model trained on SVHN generalizes
better to MNIST (58.81% accuracy). This highlights the challenges of domain
adaptation due to dataset differences.

• UMAP visualizations demonstrated that the MNIST model learns well-separated
feature clusters, whereas the SVHN model struggles with more complex real-world
variations.

• Class imbalance experiments confirmed that severely imbalanced datasets lead
to poor generalization and class representation in the latent space.

7.2 Challenges Faced

Despite the strong performance of CNNs on MNIST and SVHN, several challenges were
observed:

• Domain shift: Models trained on MNIST did not generalize well to SVHN due to
differences in digit styles, background noise, and color variations.

• Misclassification analysis: The model showed bias towards visually similar digits
(e.g., 3 and 8, 4 and 9), suggesting potential confusion in learned feature represen-
tations.

• Class imbalance impact: Training on highly imbalanced datasets led to poor
performance on the minority class, requiring techniques such as data augmentation
or weighted loss functions.

• Overfitting concerns: While MNIST models achieved near-perfect accuracy, they
may have overfitted to the dataset’s simple patterns, limiting their real-world ap-
plicability.

7.3 Potential Improvements and Future Directions

To enhance the robustness and adaptability of CNNs for digit classification, several im-
provements can be explored in future work:

• Data Augmentation: Introducing transformations such as rotation, scaling, and
contrast adjustments can improve generalization, especially for SVHN.

27

• Transfer Learning: Using pre-trained models (e.g., ResNet, EfficientNet) could
boost performance by leveraging learned feature representations.

• Attention Mechanisms: Incorporating attention-based models (e.g., Transformer-
based Vision Models) can help focus on discriminative features, reducing misclas-
sifications.

• Domain Adaptation Techniques: Training models with domain adaptation
strategies, such as adversarial training, can improve cross-dataset performance.

• Handling Class Imbalance: Using advanced rebalancing techniques like focal
loss, synthetic minority oversampling (SMOTE), or adaptive learning rates for im-
balanced classes.

7.4 Final Thoughts

This study provided a comprehensive analysis of CNN-based digit classification and high-
lighted key factors affecting model performance. While CNNs demonstrate excellent
accuracy on well-curated datasets, their limitations in handling real-world complexities
underscore the need for further enhancements. By integrating advanced deep learning
techniques and improving dataset diversity, future models can be made more robust and
adaptable to varying data distributions.

28

	Introduction
	Objective
	Datasets Used
	Methodology Overview
	Additional Contributions
	Report Structure

	Dataset Loading and Preprocessing
	Dataset Description
	Data Preprocessing
	Class Distribution in Training, Validation, and Test Sets
	MNIST Class Distributions
	SVHN Class Distributions

	Dataset Visualization
	MNIST Samples
	SVHN Samples
	Comparison Between MNIST and SVHN

	Building and Training the CNN Model
	CNN Architecture
	Training Setup
	Hyperparameter Tuning and Best Configuration
	Best Configuration for MNIST
	Best Configuration for SVHN

	Training Results and Analysis
	Analysis of Training Curves
	MNIST Analysis
	SVHN Analysis

	Model Evaluation and Visualization
	Classification Reports
	Confusion Matrices
	Sample Predictions and Misclassifications
	Softmax Confidence Scores
	Analysis and Observations

	Dimensionality Reduction and Clustering Analysis
	UMAP for Feature Visualization
	UMAP of MNIST Test Features (FC Layer Output)
	UMAP of SVHN Test Features (FC Layer Output)
	Cross-Dataset UMAP Visualization: SVHN Model on MNIST
	Cross-Dataset UMAP Visualization: MNIST Model on SVHN

	Cross-Dataset Evaluation
	Classification Report: SVHN Model on MNIST
	Classification Report: MNIST Model on SVHN
	Misclassified Examples: MNIST Model on SVHN
	Misclassified Examples: SVHN Model on MNIST
	Critical Observations

	Imbalanced Class Training and Analysis
	Class Imbalance in MNIST
	Training Results for MNIST Imbalanced Training
	UMAP Visualization of MNIST Feature Representations

	Class Imbalance in SVHN
	Training Results for SVHN Imbalanced Training
	UMAP Visualization of SVHN Feature Representations

	Effect of Imbalance on Model Performance

	Conclusion and Future Work
	Summary of Key Findings
	Challenges Faced
	Potential Improvements and Future Directions
	Final Thoughts

