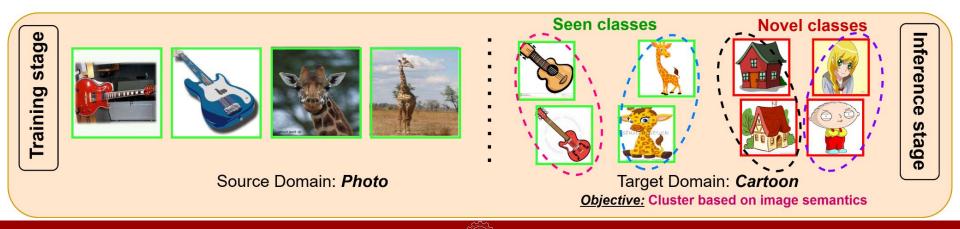
When Domain Generalization meets Generalized Category Discovery: An Adaptive Task-Arithmetic Driven Approach

Center for Machine Intelligence and Data Science (C-MInDS) Indian Institute of Technology Bombay


Presentation By : Vaibhav Rathore Under the guidance of : **Prof. Biplab Banerjee**

Co-Authors: Shubhranil B , Saikat Dutta , Sarthak Mehrotra , Zsolt Kira **Paper Status :** CVPR-2025 (Accepted)

Introduction and Motivation

- 1. What is the Problem?
 - **Generalized Category Discovery (GCD)**: Identify and cluster both **known** and **novel** classes in a target domain.
 - Existing GCD methods assume access to the target domain **during training**, which is impractical for real-world scenarios.
 - **Domain Generalization (DG)**: Train a model on a source domain to generalize to unseen domains.
- 2. Challenges
 - **Distribution shifts** between the source and target domains (e.g., summer roads vs. snowy streets).
 - Need to identify **novel classes** in the target domain while also recognizing known classes.
 - **Target data** is **unavailable** during training.

Problem Definition

Introducing Domain Generalized GCD (DG-GCD):

- **Source Domain (S):** Contains labeled data with known classes.
- Target Domain (T):
 - Completely unseen during training.
 - Contains both known and novel classes.
 - Unknown ratio of known-to-novel classes.
- Assumption: Distribution shift between source and target domains: F ≠P(T).

Key Challenges:

- No Target Data During Training
- **Domain Shifts**
- Novel Class Discovery

Objective of DG-GCD:

- Develop a domain-independent and discriminative feature space.
- Enable accurate **discovery** and **clustering** of novel classes alongside known ones during inference.

Domain Shift in DG-GCD: Identifying categories across diverse environments without domain-specific biases.

https://www.dreamstime.com/contrast-vibrant-summer-field-cold-winter-road-barren-tree-under-clear-sky-generative-ai-vivid-landscape-image342246290

Overview of DG²CD-Net

Global Model Initialization

• **Pre-trained Vision Transformer (ViT)** as the feature extractor.

Synthetic Domain Generation

- Uses Instruct-Pix2Pix to create pseudo-target domains.
- Introduces realistic domain shifts (e.g., texture, lighting).

Episodic Training Strategy

- Simulates distribution shifts using:
 - Labeled subset of the source domain.
 - Unlabeled synthetic domain as pseudo-target.

Dynamic Task-Vector Aggregation

- Task Vectors: Capture differences between global & fine-tuned models.
- Adaptive Weighting:
 - Fine-tuned models validated on a diverse validation set.
 - Softmax-based generalization scores for dynamic weighting.

Training Process

- Local Updates: Fine-tune episodic tasks for domain & class adaptation.
- Global Update: Aggregate weighted task vectors to progressively update the global model.

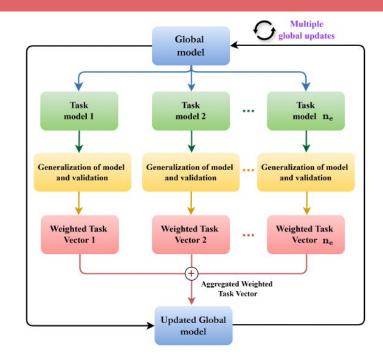


Figure 1. **Proposed episodic training**: A pre-trained global model is updated using task vectors from n_e episode-specific fine-tuned models, leveraging a novel dynamic weighting scheme. This scheme adjusts the task vectors based on their GCD generalization performance on a held-out unseen validation distribution.

Why Synthetic Domain Generation ?

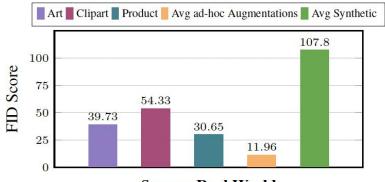
Problem

- Training on a single source domain lacks diversity. .
- Model struggles to generalize to unseen target domains. .

Solution

Generate synthetic domains to introduce realistic distribution . shifts.

Method: Instruct-Pix2Pix


- Uses a pre-trained diffusion model (Instruct-Pix2Pix). .
- Controlled via text prompts to create variations while preserving . semantics.

Domain Variations Introduced

- **Texture:** Snowy, rainy, foggy conditions. **Lighting:** Night-time, low-light scenarios. .
- Environment: Forest, beach, urban backgrounds. .

Example Prompt

"Add snowy weather to the image." .

Source: Real World

Episodic Training Strategy

Algorithm 1 Proposed Episodic Training Strategy for Updating θ_{global}

Require: Pre-trained global model parameters θ⁰_{global}, number of global updates n_g, number of episodes per global update n_e, source domain D^e_g, synthetic domain D^e_{global}, validation domain D_{valid} in the eth_g episode.
 Ensure: Final global model θ^{ng}_{global}.
 1: for g = 1 to n_g do ▷ Global updates
 2: Randomly shuffle synthetic domains D^e_{gyn}.

- 3: **for** each episode e = 1 to n_e **do**
- 4: Initialize task model parameters $\theta_{local}^{e_g} \leftarrow \theta_{global}^{g-1}$.
- 5: Train task model $\theta_{local}^{e_g}$ on $(\mathcal{D}_{\mathcal{S}}^{e_g}, \mathcal{D}_{syn}^{e_g})$ for the CD-GCD task.
- 6: Compute task vector δ_q^e (Equ. 1 in main text) :

 $\delta_g^e = \theta_{\text{global}}^{g-1} - \theta_{\text{local}}^{e_g}$

▷ Episode training

7: Validate task model on \mathcal{D}_{valid} and compute accuracies: All, Old, New.

8: end for

9: Compute weights w_g^e using softmax on All accuracies (Equ. 2 in main text) :

$$w_g^e = \frac{\exp(\operatorname{All}_g^e)}{\sum_{e'=1}^{n_e} \exp(\operatorname{All}_g^{e'})}$$

10: Update global model $\theta_{glob^{nl}}^{g}$ (Equ. 3 in main text) :

$$heta_{ ext{global}}^g = heta_{ ext{global}}^{g-1} - \sum_{e=1}^{n_e} w_g^e \delta_g^e$$

11: end for 12: Save the final global model: $\theta_{global}^{n_g}$.

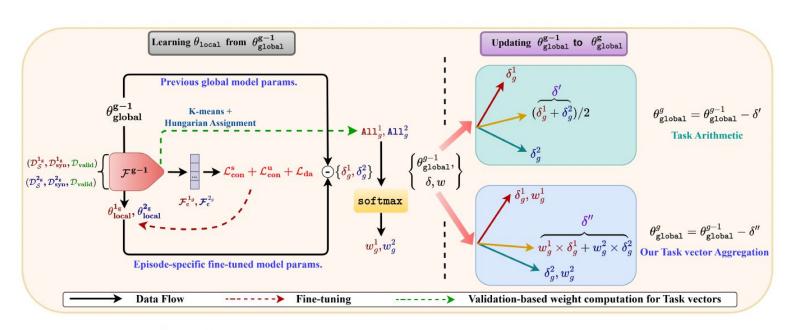


Figure 4. Transition from θ_{global}^{g-1} to θ_{global}^{g} in our training strategy: The left panel illustrates the two-way episodic training process. Starting with episode-specific datasets $(\mathcal{D}_{\mathcal{S}}^{1g}, \mathcal{D}_{syn}^{1g})$ and $(\mathcal{D}_{\mathcal{S}}^{2g}, \mathcal{D}_{syn}^{2g})$, we fine-tune the previous global model \mathcal{F}^{g-1} together with episode-specific adversarial classifiers \mathcal{F}_{c}^{1g} and \mathcal{F}_{c}^{2g} on the local CD-GCD tasks. This produces fine-tuned models with updated weights θ_{local}^{1g} and θ_{local}^{2g} . We calculate the task vectors $(\delta_{g}^{1}, \delta_{g}^{2})$ for the fine-tuned models. GCD generalization is subsequently assessed on \mathcal{D}_{valid} using the All metric, resulting in generalization weights (w_{g}^{1}, w_{g}^{2}) for the fine-tuned models. The **right panel** shows how the global models are updated through task vector aggregations for baseline TA [18] and ours. **Red** and **Blue** denote the episodes-specific data/processing.

CD-GCD Objectives

Loss Functions

To achieve the objective, three key loss components are used:

1. Supervised Contrastive Loss

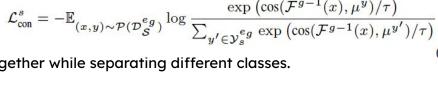
- Operates on **source domain** labeled data.
- Encourages samples from the same class to cluster together while separating different classes.

2. Unsupervised Contrastive Loss

- Operates on **source + synthetic domains** without labels.
- Maximizes similarity between an image and its augmentation while minimizing similarity with other images in the batch.

3. Domain-Alignment Loss

- $\mathcal{L}_{ ext{da}} = \mathcal{L}_{ ext{adv}} + \lambda \mathcal{L}_{ ext{margin}}$
- Aligns features between the **source** and **synthetic domains** while distinguishing **novel classes**.
- Consists of:
 - **Open-set Adversarial Loss**: Separates novel samples from known classes.
 - Margin Loss: Enforces confidence in known-class predictions while pushing unknown samples away.


$$\mathcal{L}_{\text{margin}} = \mathbb{E}_{x \in \mathcal{P}(\mathcal{D}_{\text{syn}}^{e_g})} \max \left(0, \ m - \left| \max(p(x)) - \left(1 - \sum_{q=1}^{|\mathcal{Y}_s^{e_g}|} p_q(x) \right) \right| \right) \right)$$

$$F(x): \text{ Feature extractor.}$$

$$\mu_y: \text{ Class center.}$$

$$T: \text{ Temperature parameter.}$$

$$x+: \text{ Augmented version of } x$$

 $\mathcal{L}_{\text{con}}^{u} = \mathbb{E}_{x \sim \mathcal{P}(\mathcal{D}_{\mathcal{S}}^{e_{g}} \cup \mathcal{D}_{\text{syn}}^{e_{g}})} - \log \frac{\exp\left(\cos(\mathcal{F}^{g-1}(x), \mathcal{F}^{g-1}(x^{+}))/\tau\right)}{\sum\limits_{x' \in \mathcal{B}} \exp\left(\cos(\mathcal{F}^{g-1}(x), \mathcal{F}^{g-1}(x'))/\tau\right)}$

We evaluate DG²CD-Net on **three benchmark datasets** commonly used for Domain Generalization (DG) and Generalized Category Discovery (GCD):

Dataset	Domains	Samples	Classes
PACS	Art, Cartoon, Photo, Sketch	9991	7
Office Home	Art, Clipart, Product, Real World	15588	65
Domain Net	Clipart, Infograph, Painting, Quickdraw, Real World, Sketch	586575	345

CVPR

Class Distribution

- Known-to-Novel Class Ratios:
 - **PACS: 4 : 3**
 - **Office-Home**: 40 : 25
 - **Domain Net**: 250 : 95

Synthetic Domain Generation

- For each dataset, **9 synthetic domains** were generated:
 - 6 for training (e.g., Snow, Rain, Night).
 - **3 for validation** (e.g., Urban, Gray, Summer).

A quick peek at Synthetic Domains

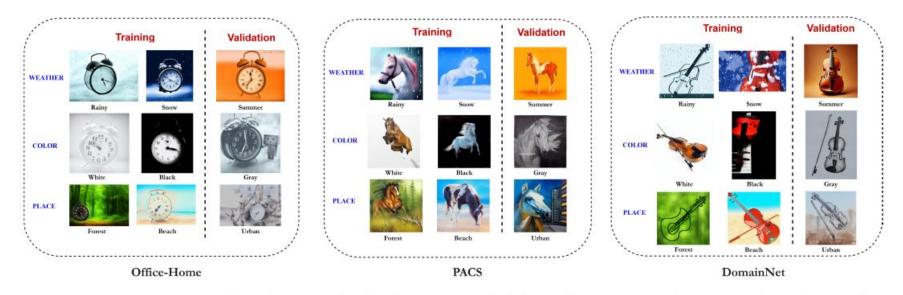
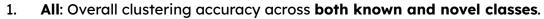



Figure 1. Categorization of synthetic domains utilized in the training and validation phases. Training domains are designed to simulate diverse conditions such as weather, color, and place variations. Validation domains challenge the model's adaptability to new, complex scenarios.

Results

- 2. **Old**: Accuracy for known classes in the target domain.
- 3. **New**: Accuracy for novel classes discovered in the target domain.

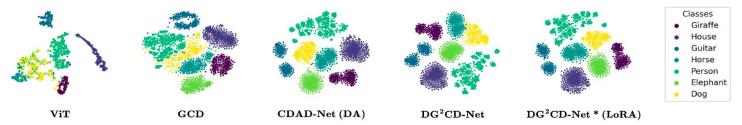


Figure 5. **t-SNE [39] visualizations** of the target domain ("Photo") clusters, as produced by pre-trained ViT, GCD [41], CDAD-Net(DA) [33], DG²CD-Net and DG²CD-Net* (LoRA) for the PACS dataset, with "Sketch" as the source domain. Both the variants of DG²CD-Net are able to produce a clean and compact embedding space.

Methods	Venue	Synthetic-		PACS		O	ffice-Ho	ne	D	omainN	et		Average	:
THE HOUS	venue	Domains	All	Old	New	All	Old	New	All	Old	New	All	Old	New
ViT [10]	ICLR'21	×	41.98	50.91	33.16	26.17	29.13	21.62	25.35	26.48	22.41	31.17	35.51	25.73
GCD [41]	CVPR'22	×	52.28	62.20	38.39	52.71	54.19	50.29	27.41	27.88	26.13	44.13	48.09	38.27
SimGCD [52]	ICCV'23	×	34.55	38.64	30.51	36.32	49.48	13.55	2.84	2.16	3.75	24.57	30.09	15.94
CMS [8]	CVPR'24	×	28.95	28.13	36.80	10.02	9.66	10.53	2.33	2.40	2.17	13.77	13.40	16.50
CDAD-Net [33]	CVPR-W'24	×	69.15	69.40	68.83	53.69	57.07	47.32	24.12	23.99	24.35	48.99	50.15	46.83
SODG-NET [2]	WACV'24	×	37.43	40.28	28.38	36.53	49.42	14.58	27.77	27.98	26.15	33.91	39.23	23.04
GCD with Synthetic [41]	CVPR'22	1	65.33	67.10	64.42	50.50	51.48	48.96	24.71	24.80	21.94	46.85	47.78	45.11
SimGCD with Synthetic [52]	ICCV'23	1	39.76	43.76	35.97	35.57	48.58	12.89	2.71	1.99	4.14	26.01	31.44	17.67
CMS with Synthetic [8]	CVPR'24	1	28.01	26.71	29.04	12.09	12.66	11.13	3.22	3.28	3.03	14.44	14.22	14.40
CDAD-Net with Synthetic [33]	CVPR-W'24	1	60.76	61.67	59.49	53.49	56.90	47.76	23.85	23.88	24.26	46.03	47.47	43.84
DAML [36]	CVPR '21	×	40.26	42.90	29.28	36.20	49.53	14.06	27.10	28.25	26.16	34.52	40.23	23.17
DG ² CD-Net with TIES-Merging [58]		1	67.04	71.25	64.02	53.52	57.12	48.03	28.72	30.35	24.39	49.76	52.91	45.48
DG ² CD-Net with baseline TA[18]		1	71.02	73.44	68.01	52.63	52.41	52.69	28.12	29.58	24.42	50.59	51.81	48.37
DG ² CD-Net (Ours)		1	73.30	75.28	72.56	53.86	53.37	54.33	29.01	30.38	25.46	52.06	53.01	50.78
DG ² CD-Net* (Ours) [LoRA [17]]		1	75.21	76.31	75.28	54.32	53.03	56.03	27.17	27.61	25.99	52.23	52.32	52.43
CDAD-Net (DA) [33] [Upper bound]		X	83.25	87.58	77.35	67.55	72.42	63.44	70.28	76.46	65.19	73.69	78.82	68.66

Table 2. **Performance comparison** across three datasets, averaged over all domain combinations. We baseline with two versions of existing GCD and CD-GCD methods: one trained solely on \mathcal{D}_S and another on $\mathcal{D}_S \cup \mathcal{D}_{syn}$, both without target-specific loss functions to simulate the DG scenario. Subsequently, multiple model aggregation strategies are evaluated for DG²CD-Net. As an upper bound, we include the full CDAD-Net, designed for the transductive DA setting. Red cells highlight the top results; yellow is the second-best.

Dataset	PACS	Office-Home	DomainNet
Ground Truth	7	65	345
CDAD-Net (DG)	12	60	362
CDAD-Net (DA)	7	66	349
Ours	7	67	355

Table 2. Estimation of cluster numbers in target domains showcases DG^2CD -Net's effectiveness in achieving near-optimal clustering, beating other DG counterparts, and closely matching CDAD-Net (DA) performance.

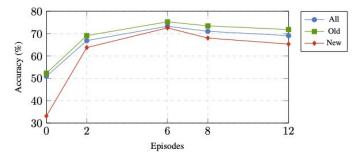


Figure 7. Charting the relationship between **number of episodes** and model accuracy on PACS, this graph shows accuracy peaks at 6 episodes, which is majorly consistent across all the datasets.

Madel Variant		PACS	
Model Variant	All	Old	New
(i) With manual augmentations based \mathcal{D}_{syn}	63.92	62.09	67.06
(ii) Without synthetic domain	50.91	52.28	33.16
(iii) Without multi-global updates	66.70	67.52	66.39
(iv) Static known/novel class split across episodes	68.60	69.70	66.13
(v) Conventional normalization for w_q^e s in Eq. 2	61.98	69.77	54.43
(vi) Episode specific \mathcal{D}_{valid}	69.26	73.34	65.15
(vii) Replacing our CD-GCD losses with those of [33]	69.82	74.00	66.23
(viii) DG ² CD-Net with Fisher-merging [26]	71.67	74.42	70.03
Full DG ² CD-Net	73.30	75.28	72.56

Table 4. Performance metrics demonstrating the **influence of key model components** of DG^2CD -Net for PACS.

Conformations	08	cu	C	C	PACS					
Configurations	\mathcal{L}_{con}^{s}	\mathcal{L}_{con}^{u}	\mathcal{L}_{adv}	Lmargin	All	Old	New			
C-0	×	×	×	×	41.98	50.91	33.16			
C-1	1	×	×	×	60.63	65.15	54.63			
C-2	X	1	X	×	67.84	68.92	66.17			
C-3	1	1	×	×	68.70	69.52	67.61			
C-4	1	×	1	×	64.16	66.10	60.81			
C-5	X	1	1	×	69.22	69.20	69.34			
C-6			1	×	71.45	72.92	70.33			
C-7	1	1	1	1	73.30	75.28	72.56			

Table 5. Impact of **loss components** of DG²CD-Net on PACS.

Model	Deelthone		PACS	
Model	Backbone	All	Old	New
ResNet-50	CLIP [17]	25.39	20.97	29.33
ResNet-50	ImageNet [8]	54.98	64.18	45.33
ViT-B/16	DINO [1]	73.30	75.28	72.56
ViT-B/16	DINO-v2 [14]	87.71	90.67	84.91
ViT-B/16	CLIP [17]	90.07	92.25	87.72

Table 12. Performance Comparison of DG²CD-Net with different backbones on the PACS Dataset

Method	Trainable Parameters (K)	Total Parameters (K)	Percentage (%)
DG ² CD-Net (Vanilla)	7,088	85,799	8.261
DG ² CD-Net* (LoRA)	98	85,799	0.115

Table 13. Comparison of model parameters with and without LoRA fine-tuning.

Adapters	All (%)
LoRA [10]	75.21
DoRA [13]	74.11
AdaLoRA [25]	74.20

Table 14. Performance comparison of DG²CD-Net with different LoRA Adapters

2							PAC	S										
Methods	Art Pa	inting	Sketch	Art Pa	inting \rightarrow	Cartoon	Art P	Painting	\rightarrow Phote	o Pho	to \rightarrow Art 1	Painting	Phot	$\mathbf{o} \to \mathbf{Car}$	rtoon	Pho	to \rightarrow Sk	etch
Wiethous	All	Old	New	All	Old	New	All	Old	New	A1.	. Old	New	All	Old	New	All	Old	New
ViT [4]	37.44	50.73	19.5	47.4	61.3	35.25	76.05	87.13	64.64	4 53.1	7 77.31	31.67	47.01	55.54	39.57	31.87	37.57	24.16
GCD [20]	32.02	41.53	19.12	46.78	60.35	28.57	79.16	99.4	5 48.73	3 74.7	3 80.26	67.31	57.53	60.46	53.6	46.23	48.56	43.08
SimGCD [23]	29.35	17.3	62.12	23.08	28.26	16.32	51.98	74.44	4 33.26	5 46.2	9 48.96	43.17	34.26	44.91	20.35	24.84	31.88	5.68
CDAD-Net [18]	46.02	45.95	46.21	51.71	53.43	49.46	99.04	99.2	98.9	76.6	1 76.97	76.19	56.78	56.67	56.93	46.65	46.15	48.01
GCD With Synthetic	45.78	36.71	58.01	54.84	73.47	38.57	82.6	66.29	99.39	79	86.84	72.02	53.56	67.93	41.01	44.18	47.78	39.32
CDAD-Net with Synthetic	43.09	42.53	44.6	49.45	59.31	36.58	99.16	99.2	1 99.12	2 65.3	8 62.83	68.36	42.92	41.97	44.15	41.51	43.79	35.32
DG ² CD-Net (TIES-Merging[24])	41.31	40.56	42.31	45.69	57	35.81	96.11	97.8	7 94.29	9 62.8	7 87.72	40.72	48.98	60.02	39.33	44.1	36.33	54.58
DG ² CD-Net [TA[11]]	46.4	51.3	42.8	56.21	58.82	52.7	99.2	99.5	98.8	81.4	7 91.09	68.57	57.76	56.11	59.99	46.88	48.96	44.06
DG ² CD-Net (Ours)	46.79	38.13	58.49	57.96	73.38	44.48	99.34	99.7	98.97	7 86.6	7 91.87	82.04	62.97	71.18	55.8	45.72	36.53	58.13
DG ² CD-Net * (Ours)[LoRA[10]]	46.83	37.79	59.03	63.82	71.13	57.43	99.46	99.3	5 99.57	7 88.8	9 93.94	84.4	64.19	72.23	57.15	46.45	37.75	58.19
	Sketch	$\rightarrow \operatorname{Art}$	Painting	Skete	$h \rightarrow Ca$	rtoon	Sket	$ch \rightarrow Pl$	noto	Carton	$\mathbf{n} ightarrow \mathbf{Art} \mathbf{I}$	Painting	Carto	oon → S	ketch	Cart	$\operatorname{oon} \to \mathbf{F}$	Photo
Methods	All	Old	New	All	Old	New	A11	Old	New	All	Old	New	All	Old	New	All	01d	New
ViT [4]	23.93	26.53	21.61	40.61	58.92	24.62	33.29	33.88	32.69	38.09	47.36	29.82	33.57	35.67	30.74	41.38	39.08	43.74
GCD [20]	33.25	39.09	25.43	40.89	48.14	31.17	46.86	59.28	28.22	58.15	78.52	30.86	36	44.83	24.04	75.75	85.88	60.55
SimGCD [23]	21.19	31.91	8.67	23.17	36.77	5.4	34.22	27.46	40.8	38.38	42.07	34.07	34.84	33.94	37.31	53.05	45.85	59.06
CDAD-Net [18]	87.99	84.32	92.28	51.88	51.77	52.02	99.04	99.21	98.9	73.05	76.88	68.57	41.84	42.71	39.49	99.22	99.47	99.01
GCD With Synthetic	82.15	85.13	79.5	44.3	48.22	40.89	99.49	99.76	99.21	63.01	63.73	62.37	35.66	29.95	43.36	99.43	99.47	99.39
CDAD-Net with Synthetic	61.91	69.45	53.12	48.59	53.13	42.67	68.44	63.5	72.56	67.24	65.28	69.52	42.05	39.61	48.67	99.34	99.47	99.23
DG ² CD-Net (TIES-Merging[24])	80.59	80.78	80.42	58.94	75.71	44.28	99.07	98.64	99.51	87.45	90.93	84.35	40.67	31.39	53.2	98.71	97.99	99.45
DG ² CD-Net (TA[11])	73.02	79.37	64.51	55.89	54.84	57.29	99.31	99.5	99.03	90.89	92.75	88.4	46.03	49.67	41.1	99.16	99.35	98.88
DG ² CD-Net (Ours)	88.75	93.52	84.49	56.76	72.14	43.33	99.13	98.7	99.57	90.77	93.37	88.46	49.2	43.18	57.33	95.57	91.62	99.64
DG ² CD-Net * (Ours)[LoRA[10]]	90.87	95.28	86.93	66.25	78.32	55.72	99.22	98.88	99.57	91.02	93.99	88.37	46.33	38.19	57.33	99.22	98.82	99.64

Table 5. Detailed comparison of our proposed DG²CD-Net on DG-GCD with respect to referred literature for PACS Dataset.

							Office-l	Home										
Methods	Ar	$t \rightarrow Clip$	art	Art	\rightarrow Proc	luct	Art -	→ Real V	Vorld	Cli	part \rightarrow	Art	Clipar	$\mathbf{t} ightarrow \mathbf{Rea}$	l World	Clipa	$\mathbf{rt} \rightarrow \mathbf{Pr}$	oduct
Methods	All	Old	New	All	Old	New	All	Old	New	All	Old	New	All	Old	New	All	Old	New
ViT [4]	18.88	20.86	15.79	30.34	35.42	21.83	29.52	32.76	24.85	14.96	15.6	14.12	18.59	20.12	16.4	30.39	32.51	26.84
GCD [20]	31.65	32.11	30.93	63.18	64.35	61.22	63.85	66.56	59.96	51.96	52.7	51	62.62	65.29	58.79	60.59	67.13	49.61
SimGCD [23]	24.54	34.35	8.09	41.95	57.92	13.54	46.78	65.54	14.73	31.11	39.56	11.88	25.66	37.66	5.15	28.88	41.38	12.96
CDAD-Net [18]	30.95	33.65	26.43	64.99	68.04	59.32	67.5	70.89	61.72	53.36	56.05	47.23	64.7	69.4	55.25	67.02	68.8	63.7
GCD With Synthetic	29.86	31.04	28.02	57.92	63.12	49.19	59.47	59.59	59.29	53.3	52.84	53.89	61.46	58.27	66.06	63.84	64.04	63.51
CDAD-Net with Synthetic	31.97	35.1	26.71	65.39	68.94	62.51	67.83	70.87	62.64	53.51	56.65	46.37	66.97	69.76	62.2	61.4	65.55	57.4
DG ² CD-Net (TIES-Merging[24])	33.96	37	29.23	59.99	62.93	55.07	66.26	68.42	63.15	52.18	52.3	52.04	58.16	58.62	57.5	65.32	72.33	53.56
DG ² CD-Net [TA[11]]	29.52	27.31	33.06	62.42	61.67	63.59	64.46	62.14	67.8	51.24	53.32	47.12	64.23	61.24	68.92	65.28	66.03	64.13
DG ² CD-Net (Ours)	31.51	31.96	30.81	67.46	68.73	65.32	64.45	60.25	70.48	50.76	48.76	53.36	64.77	60.58	70.79	65.34	67.48	61.76
DG ² CD-Net (Ours)[LoRA [10]]	31.56	31.85	31.1	65.22	65.68	64.45	67.81	65.14	71.66	53.4	48.47	59.81	66.13	61.63	72.61	66.16	67.12	64.57
Methods	Pro	$\operatorname{duct} \to A$	Art	Product	\to Real	World	Prod	uct \rightarrow C	lipart	Real	World	Art	Real W	orld \rightarrow l	Product	Real W	$orld \rightarrow$	Clipart
Methous	A11	Old	New	All	Old	New	All	Old	New	All	Old	New	All	Old	New	A11	Old	New

Methods	A11	Old	New	All	Old	New	All	Old	New	A11	Old	New	All	Old	New	All	Old	New
ViT [4]	23.2	24.64	21.33	31.21	35.45	25.13	19.27	20.52	17.31	32.22	35.79	27.58	44.67	52.21	32.03	20.8	23.71	16.26
GCD [20]	50.27	48.18	52.99	65.07	63.09	67.91	29.08	29.22	28.87	54.26	54.05	54.55	69.04	72.76	62.79	31.04	34.93	24.97
SimGCD [23]	38.28	50.42	10.66	48.36	67.07	16.41	22.45	32.37	11.34	48.95	66.79	8.36	57.19	69.23	44.15	21.7	31.46	5.33
CDAD-Net [18]	50.1	52.43	44.67	66.47	72.13	56.81	31.36	34.6	25.94	54.68	58.07	46.96	61.39	64.79	55.06	31.78	36.02	24.69
GCD With Synthetic	49.18	46.54	52.61	63.4	59.67	68.77	28.43	27.72	29.55	51.71	61.55	38.91	61.14	65.34	54.1	26.38	28.11	23.68
CDAD-Net with Synthetic	54.12	57.67	46.04	66.97	70.2	61.46	32.34	35.13	28.68	53.72	56.89	46.5	56.47	62.33	45.62	31.19	33.67	27.02
DG ² CD-Net (TIES-Merging[24])	53.28	54.77	51.33	62.74	66.85	56.83	31.82	33.97	28.46	57.11	66.14	45.36	67.04	74.25	54.95	34.41	37.94	28.9
DG ² CD-Net [TA[11]]	49.92	52.33	45.17	65.57	67.22	62.99	31.48	30.21	33.51	51.65	55.06	44.92	65.01	63.73	66.99	30.73	28.65	34.08
DG ² CD-Net (Ours)	52.45	50.51	54.98	67.87	69.88	64.97	30.71	30.05	31.75	52.31	49.42	56.07	67.37	71.65	60.19	31.28	31.13	31.51
DG ² CD-Net * (Ours)[LoRA[10]]	52.66	51.75	53.84	65.48	62	70.48	31.52	31.83	31.04	53.42	51.6	55.78	66.33	68.97	61.91	32.26	30.4	35.15

Table 6. Detailed comparison of our proposed DG²CD-Net on DG-GCD with respect to referred literature for Office-Home Dataset

					Do	mainNet									
Methods		etch \rightarrow I	Real		\rightarrow Qui			ightarrow Info	<u> </u>		$h \rightarrow Pai$	nting		ch ightarrow Cl	
	A11	Old	New	A11	Old	New	A11	Old	New	A11	Old	New	A11	Old	New
ViT [4]	47.17	47.92	44.95	12.13	12.1	12.21	11.99	12.68	10.28	30.95	33.02	25.75	32.64	34.29	28.64
GCD [20]	51.13	51.88	48.92	16.08	15.65	17.2	12.6	12.57	12.68	35.25	35.96	33.46	31.22	30.85	32.1
SimGCD [23]	3.11	3.47	2.32	2.31	2.4	2.1	3.16	2.27	5.24	4.1	2.57	5.62	3.02	2.3	4.07
CDAD-Net [18]	48.21	47.7	49.77	12.27	11.52	14.24	12.07	12.69	11.34	35.47	36.39	32.86	18.63	17.52	20.3
GCD With Synthetic	53	51.71	47.64	13.71	13.79	13.99	12.24	11.99	11.37	35.43	34.12	30.83	22.49	22.2	21.4
CDAD-Net with Synthetic	47.11	46.09	49.4	12.75	13.1	14.05	12.52	13.04	11.92	35.87	36.73	33.35	18.99	17.68	21.0
DG ² CD-Net (TIES-Merging[24])	50.32	52.88	42.8	15.22	15.12	15.49	14.75	16.04	11.53	35.84	38.99	27.93	31.06	33.34	25.5
DG ² CD-Net [TA[11]]	51.84	52.58	49.65	13.67	13.44	14.25	12.72	13.05	11.89	33.96	35.32	30.55	21.94	21.8	22.2
DG ² CD-Net (Ours)	53.67	55.48	48.35	15.9	16	15.63	14.63	15.66	12.06	37.44	39.53	32.19	30.47	32.89	24.5
DG ² CD-Net * (Ours)[LoRA[10]]	53.01	53.75	50.84	13.71	13.38	14.57	13.82	14.23	12.78	36.77	37.9	33.93	24.17	24.46	23.4
Methods	$\textbf{Clipart} \rightarrow \textbf{Infograph}$		$Clipart \rightarrow Quickdraw$			Clips	$art \rightarrow Sl$	ketch	Clij	part \rightarrow I	Real	Clipa	$rt \rightarrow Pa$	inting	
Wethous	A11	Old	New	A11	Old	New	All	Old	New	All	Old	New	A11	Old	Nev
ViT [4]	12.18	12.64	11.03	12.13	12.1	12.21	24.76	26.24	21.27	44.14	45.43	40.34	26.76	28.7	21.9
GCD [20]	14.03	14.64	12.49	14.94	14.67	15.65	25.33	27.68	19.78	53.23	55.48	46.62	34.82	36.82	29.8
SimGCD [23]	2.03	0.4	3.94	0.5	0.3	1	1	0.02	3.842	1.64	1.07	2.42	2.07	2.05	2.13
CDAD-Net [18]	12.79	12.96	12.87	12.06	11.59	12.78	19	19.17	18.76	47.06	44.62	49.2	34.45	36.02	32.8
GCD With Synthetic	11.46	12.03	10.04	12.68	12.57	12.95	18.74	20.54	14.47	50.11	52.26	43.79	32.67	34.91	27.0
CDAD-Net with Synthetic	13	13.37	12.56	12.07	11.76	12.89	17.46	18.03	16.67	48.25	47.51	49.6	33.23	32.79	34.
DG ² CD-Net (TIES-Merging[24])	15.66	17.02	12.28	14.91	14.73	15.39	27.75	30.64	20.89	54.18	56.73	46.72	36.71	38.14	33.1
DG ² CD-Net [TA[11]]	15.71	16.88	12.78	14.63	14.18	15.81	27.03	29.89	20.26	53.91	55.14	50.29	36.85	39.69	29.7
DG ² CD-Net (Ours)	15.81	17.09	12.63	14.53	14.14	15.58	26.86	29.49	20.64	54.54	56.03	50.17	36.81	38.87	31.6
DG ² CD-Net * (Ours)[LoRA[10]]	14.19	14.12	14.35	13.31	13.23	13.53	22.01	22.9	19.91	53.95	54.99	50.91	37.12	37.89	35.2
	Paintin	$\mathbf{g} \rightarrow \mathbf{Inf}$	ograph	Paintir	$\mathbf{q} \rightarrow \mathbf{Q}\mathbf{u}$	ickdraw	Pain	ting \rightarrow S	ketch	Pair	nting \rightarrow	Real	Paint	$ing \rightarrow C$	lipart
Methods	All	Old	New	All	Old	New	A11	Old	New	All	Old	New	All	Old	Nev
ViT [4]	12.2	13.1	9.94	12.13	12.1	12.21	23	24.78	18.79	51.53	54.16	43.8	26.57	28.08	22.9
GCD [20]	12.87	12.67	13.37	10.74	10.56	11.21	21.49	22.26	19.68	52.12	51.86	52.86	25.32	24.79	26.0
SimGCD [23]	3.2	2.6	3.8	3.5	2.32	4.65	4.23	3.56	4.86	4.2	3.52	5	4.49	3.6	5.2
CDAD-Net [18]	11.65	12.49	10.66	11.98	11.2	12.44	17.11	17.68	16.32	49.04	48.63	50.27	20.06	19.74	20.5
GCD With Synthetic	10.86	10.56	9.84	11.81	11.8	11.77	17.26	16.25	13.83	49.1	47.3	42.04	19.3	19.45	18.0
CDAD-Net with Synthetic	11.53	12.32	10.59	11.86	10.71	12.32	17.29	18.45	15.7	48.4	50.23	49.7	17.44	15.92	19.8
DG ² CD-Net (TIES-Merging[24])	15.34	16.64	12.13	12.89	12.64	13.58	23.45	25.6	18.38	55.16	57.3	47.46	27.5	29.48	22.6
DG ² CD-Net [TA[11]]	15.17	16.52	11.8	12.78	12.58	13.29	23.21	25.69	17.34	55.16	57.31	48.87	26.76	27.91	23.9
DG ² CD-Net (Ours)	15.71	16.72	13.22	12.9	12.66	13.53	23.14	25.23	18.19	55.07	56.97	49.5	27.6	29.07	24.0
DG ² CD-Net * [Ours)[LoRA[10]]	14.41	14.68	13.74	12.9	12.9	12.91	21.39	22.39	19.03	53.83	54.99	50.44	22.94	22.41	24.2

Table 7. Detailed comparison of our proposed DG²CD-Net on DG-GCD with respect to referred literature for DomainNet Dataset

Summary:

- **Problem Addressed:** Existing GCD methods struggle with unseen target domains and distribution shifts, limiting their real-world applicability.
- **Proposed Solution:** DG²CD-Net leverages episodic training, adaptive task-arithmetic, and robust feature learning to improve domain generalization and novel class discovery.
- **Key Impact:** Enables AI models to effectively cluster known and novel categories in unseen domains, ensuring adaptability without prior exposure to target data.

Limitations and Future Work

Reliance on synthetic domain generation

- Effective but computationally expensive
- Needs optimization for better efficiency
- High computational cost of episodic training
 - Especially for large-scale datasets like **Domain Net**
 - Limits feasibility in real-world applications

Future Enhancements

- Optimize synthetic domain generation
 - Explore streamlined methods or alternatives to synthetic data
- Improve efficiency of episodic training
 - Reduce computational resource demands
- Advanced model merging techniques
 - Enhance performance and generalization
- Address real-world challenges
 - Handle **data imbalance** for better robustness
- Increase scalability for large-scale applications
 - Improve adaptability to diverse domains

Questions and feedback are welcome.

