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ABSTRACT

Current deep learning based image segmentation methods are notable for their use of large number
of parameters and extensive computational resources in training. There is a persistent need for
more efficient flexible systems without compromising on precision. This work proposes a novel
model that combines the best of deep learning and probabilistic machine learning to segment a wide
variety of medical image datasets with state-of-the-art accuracy and limited resources. The approach
benefits from the introduction of new diverse attention modules that serve multiple purposes including
capturing of relevant information at different scales. These proposed attention modules are generic
and can potentially be used with other architectures to boost performance. In addition, Bayesian
optimization is employed to tune multi-scale weight hyperparameters of the model. The architecture
combined with one of the proposed novel attention modules and tuned hyperparameters achieves the
best results in segmenting ISIC 2017, LUNGS, NERVE, Skin Lesion, and CHEST datasets. Finally,
the explainability of the network is analyzed by visualizing the feature map learned from the attention
modules.

Keywords Attention Network - Bayesian Optimisation - Medical Image Segmentation - Min Pooling - Multi-scale
Losses - Residual Networks

1 Introduction

Image segmentation methods are employed in a wide variety of domains in our day-to-day life, e.g., in self-driving
cars [1] for decision making, amidst industrial robotics [2] for aiding interactions with the dynamic world, in security
[3]], as well as in unmanned aerial vehicles [3]] for vigilance. Another important area of application is medical image
analysis [4} 5] where it is used to infer critical information about the shapes and sizes of different organs for automatic
generation of segmentation masks. Biomedical image segmentation often relies on scarce and imbalanced data, making
it more challenging to develop data-hungry deep learning models. Several architectures have been proposed in the
recent literature, each with its own capabilities and limitations.

*Review copy, donot distribute. Codes and models will be available only after publication at: https://github.com/Jimut123/bmsan.
Current affliation of author is at Centre for Machine Intelligence and Data Science, Indian Institute of Technology, Bombay, Powai,
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The medical-imaging community is in pressing need of segmentation architectures with low resource requirements
and high precision performance capability. This work is driven by the motivation to develop single-class segmentation
models that can operate using fewer resources in terms of model parameters and at the same time improve on the
reported metrics without data augmentation or transfer learning. We have created two novel architectures for this
purpose and used them to perform benchmarks on the already available state-of-the-art (SOTA) architectures in a
wide variety of datasets. This study also investigates the explainability of deep learning architectures that reveals the
superior performance of the proposed attention module in terms of incorporating prominent features toward the final
segmentation results. The main contributions of this work may be summarized as follows:

* Two models are developed, i.e., Modified U-Net based on a fine-tuned and heavily modified version of
MobileNetV2 [6] in the form of encoder-decoder architecture. The other is Multi-Scaled Attention Networks
(MSAN) by taking motivation from the popular MultiResUNet [7] and additionally passing different sized
(multi-scaled) inputs to the model, which shows significant improvements in terms of previous segmentation
models.

 Three types of attention modules have been proposed that can potentially be used with other architectures to
boost performance.

* Bayesian Optimization (BO) [8]] is used for obtaining the optimized weights associated with the multi-
scaled mask’s features for improving segmentation by using a multi-scaled weighted loss function. The new
model, with the weight hyperparameters tuned using BO, is called Bayesian Multi-Scaled Attention Network
(BMSAN).

* The proposed model, with the attention modules incorporated, has lesser number of parameters compared to
U-Net, while surpassing the current SOTA models with 4x more parameters in most of the datasets.

The paper is organized as follows: First, the related literature in the field of medical image segmentation is reviewed,
followed by discussions on the datsets used for comparison, formulation of the model’s multi-scale loss function,
description of the proposed novel attention modules, and implementation of BO for performance enhancement. We
then present the results of the benchmarking evaluations of the proposed architecture with respect to several SOTA
models on diverse datasets. An ablation study is also undertaken and finally, the paper is concluded with discussions on
the future scope and limitations of the work.

2 Literature Review

The U-Net architecture [9]] and its variants have been successfully employed for segmenting biomedical image datasets.
Some alterations of the U-Net [10] use contractive paths to capture context and symmetric expanding path for precise
localization of segmentation masks. The addition of attention gates to U-Nets assists in capturing salient features,
of varying shapes and sizes, that have been found to be useful in certain specific tasks [11} 12} [13]. Attention gates
also help in suppressing irrelevant regions, thereby increasing the prediction accuracy of models. Some other works
have incorporated Recurrent Convolutional Neural Networks (RCNN) as well as Recurrent Residual Convolutional
Neural Network (RRCNN) [14] in the U-Net framework to achieve better segmentation results. The residual part of
the network generally helps in training deep architectures without vanishing gradients, while the recurrent residual
convolutional layers help in ensuring better feature representation for segmentation tasks. Bidirectional Convolutional
Long Short Term Memory (LSTM) [[15] models mostly helps in increasing performance and feature reuse. These
methods are commonly used for elevating the capabilities of U-Net with less computation. Other networks [[16] can
exploit the capabilities of U-Net to find delineations in medical images.

An alternative modification to the U-Net is One-pass Multi-task Network (OM-Net) [17], based on a philosophy that
humans tend to learn concepts much better when they are presented in the increasing order of difficulty. Residual
blocks in U-Net architectures predominantly help in boosting performance, and skip connections that primarily reduce
the distance between feature maps of the encoder and the decoder. This formation is further aided by the attention
mechanism in the dense architecture that helps to focus on the most relevant information in OM-Net. Similarly,
FocusNet [[18] yields highly competitive performance over U-Net and its residual variants, incorporating attention
within the Convolutional Neural Network (CNN) architecture, accompanying a separate convolutional autoencoder
to generate feature maps to boost overall performance. Recent studies, e.g. [7], have shown that there are certain
shortcomings in that U-Net architecture which can be improved. In addition, they found that batch normalization
can sometimes limit the performance of the U-Net architecture. Some other works show that the MultiResUNet [[7]
architecture, inspired by Inception [19] module, ameliorates the performance, ensures faster convergence, and delineates
faint boundaries better. Furthermore, it is immune to perturbations and outliers in terms of segmenting variants of
challenging data. Likewise, pretrained ResNet block along with spatial feature extractors can be used to derive better
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spatial features in Context Encoder Network (CE-Net) [20]. In a similar fashion, skip connections in U-Net++ [21] can
contribute to the reduction of semantic gap between the encoder and decoder resulting in faster optimization.

Some of the key features of the proposed model are briefly outlined here: Firstly, it uses fewer resources in terms of
parameters and at the same time performs better than other models in a wide variety of datasets, without the use of
transfer learning. One important aspect of the architecture is the shared processing of images at multiple scales—this
usually adds more gradients, thus helping in training deeper networks. Min pooling [22] is employed to extract
those features that are not present in the deeper layers due to the use of Rectified Linear Unit (ReLU) [23]] and max
pooling. Further, the creation of segmentation masks and minimization of losses at different scales contribute toward
faster reconstruction of actual segmentation masks. The novel self-attention modules proposed in this work delimit
the attention to crucial information in the data, eventually in aiding in the generation of better segmentation masks.
In addition, masks are added at different scales and then passed through a SoftMax function to derive appropriate
information from deeper layers. Finally, the segmentation standards are further improved by tuning weights of different
scales using BO. The use of BO in the development of optimized deep learning architectures has been proposed in some
recent works. Researchers have conducted asynchronous parallel hyper-parameter optimization via a supercomputer
[24] using BO. Others have tuned hyper-parameters of a transfer learning model [25] using the probabilistic framework.
The method is also used in the identification of best task-specific deep learning architectures using a process known as
Neural Architecture Search [26,[27]]. Here we confine the use of the probabilistic optimization technique to the very
specific task of fine-tuning the weight hyperparameters associated with the different scales of the model- such limited
and well-defined use of BO helps in overcoming the challenges of computational requirements involved in the case
of optimization of entire deep networks. The incorporation of BO generates results that surpass those obtained using
MSAN. A comparative evaluation of the proposed model with other SOTA models, via 5-fold cross-validation under
restrained conditions, demonstrates the overall efficacy of our model in a wide variety of datasets.

3 Materials and Methods

In this section, we present the various datasets used in this work, the general aspects of the model including the deep
learning architecture, the novel attention modules, and the BO framework employed for attaining superior results
compared to the initial MSAN network.

3.1 Datasets Summary

A wide variety of datasets have been selected to compare the performance of the proposed model with other SOTA
models. Standard image pre-processing techniques were used to normalize the image intensities (in the range of 0 to 1)
before they were fed to the models. For the MSAN model, we pass the inputs at different scales, i.e., I, I/2, I/4 and I/8,
where I is the original size of the image.

Brain Magnetic Resonance Imaging (MRI) Dataset [28] - The Brain MRI dataset, as shown in Figure [6I]] and Figure
contains Brain MRI images together with manual abnormality segmentation masks. This dataset is originally
retrieved from The Cancer Genome Atlas Low Grade Glioma (TCGA-LGG). Glioma is a type of tumor that starts in the
glial cells of the brain or the spine. The selected samples highlight the variety of colours and image-sizes present in the
dataset. It is arduous even for humans to exactly pinpoint or locate the origin of glioma in such images. On top of that
many images do not have any segmentation masks, making the training of deep learning algorithms more challenging.
The dataset contains about 3929 image mask pairs of dimensions 256x256.

International Skin Imaging Collaboration (ISIC) 2017 dataset [29] - The ISIC (International Skin Imaging Collabo-
ration) 2017 dataset as shown in Figure and Figure comprise images pertaining to skin lesion. A lesion is
any damage or abnormal change in the tissue of organism [30]. Such images are routinely analyzed by the medical
community for identifying the exact location of skin lesions from calibrated images. The challenges include occlusion
of images by hairs and difficulties in locating lesions due to different textures and tones of the skin. The dataset contains
about 2000 image mask pairs of dimensions 767x1022. The images are resized to 192x256 for preserving the aspect
ratio before feeding them to segmentation models for training and other purposes.

Lung’s dataset a.k.a. LUNGS dataset [31] — This dataset contains images on the horizontal cross-section of lungs and
their segmented masks using Computed Tomography (CT) scan as shown in Figure and Figure This work
examines a two-dimensional version of this dataset to segment the region of interest. Images with occluded lung parts
can lead to processing difficulties. The dataset has about 267 images mask pairs of dimensions 512x512. The images
are resized to 256x256 to preserve the aspect ratio and minimize the computations when passed to segmentation models.

Skin Lesion dataset [29]] - This dataset is created from ISIC dataset with about 200 image masks pairs of dimensions
192x256. The main purpose of selecting this dataset is to test the robustness of SOTA models without data augmentations
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Figure 1: Our proposed MSAN Model. Images are passed at different scales and the places marked with A; are replaced by a

single attention module (i.e., either 1, 2 or 3 during training). Losses are separately computed at the different scales, which possibly

contributes toward faster optimization. After up-sampling, segmentation masks are added in different proportions to generate the

final segmentation mask.
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Figure 2: Modified U-Net model, created by using MobileNetV2’s encoder architecture.
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Figure 4: The Proposed Attention Module - 2. Here, the Upper layer refers to the Residual Path and the Lower Layer refers to the
Multi Res Block from Figure T}
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and other forms of regularizations. Usually, such kinds of datasets are used with intensive data augmentations and
transfer learning. Samples from the dataset are shown in Figure and Figure

KVASIR-SEG dataset [32]] - This is an open-access dataset which comprise gastrointestinal polyp images that are
manually annotated and verified by experienced gastroenterologists as shown in Figure and Figure The
dataset has about 1000 image mask pairs. The sizes of images vary from 332x487 to 1920x1072 pixels. The images are
resized to 256x256 before passing to the segmentation models. The polyps are camouflaged into the background and it
will be challenging for the model to find the regions of interest in different colours of the intestine.

Chest X-ray Collection a.k.a CHEST dataset [12] - This dataset is provided to the scholars upon request from
Indiana University. It has about 138 grayscale images of chest radiographs and their corresponding masks in 4020x4892
resolution. The images are rescaled to 256x256 before passing to the models as shown in Figure [6XXI|and Figure
6XXIII

Nerve dataset a.k.a. NERVE dataset [33]] - This dataset comprises of 5635 Brachial Plexus Nerve images as shown in
Figure and Figure [6XXVII] The images and segmentation masks are of dimensions 420x580. They are resized
to 256x256 before passing through the model.

3.2 Proposed Model

Biomedical datasets have intra and inter-class diversity [34] when it comes to segmenting 2D imagery. In traditional
convolutional neural network (CNN) architectures, these diversities are captured locally, which can potentially degrade
the accuracy. To mitigate such shortcomings, we pursue a multi-scale approach [35]] that helps to focus on relevant
regions irrespective of scale. We feed the inputs at different scales to the left blocks, i.e., I, I/2, I/4 and I/8 , where 1
is the original size of the image. The use of Min pooling [22] assists in capturing information that is lost due to the
use of Max pooling and ReLU. Min pooling may also seem to regularize the feature space. 40 % min pooling is used
from each of the multi-scaled input images, which helps to capture those information that are lost in deeper layers. The
combination of Min pooling, Max pooling and Average pooling appears to keep the actual feature distribution intact
down the deeper layers. To help the model focus on relevant information down the deeper layer, attention mechanism is
introduced to build association between different features. At a time a single attention module is replaced by all the four
place holders represented by A; in Figure[T} The Multi Res block [[7] and the Residual blocks [36] helps to reduce the
semantic gap between the encoder and the decoder, successively helping in faster optimization. Losses are computed at
individual scales by rescaling them to the original mask size and taking a weighted addition, which eventually aids in
the faster incremental reconstruction of masks. The segmentation masks at the individual scales are combined using
optimized weight hyperperameters, which enable assigning appropriate importance to different feature space. The use
of BO further helps in improving the segmentation masks for each dataset. The proposed architecture is shown in
Figure[I] The code will be publicly available on https://github.com/Jimut123/bmsan.

3.3 Modified U-Net

To compare the efficiency of related models with a pre-trained transfer learning model, we have selected MobileNetV2
[6] as the encoder. We name this model as Modified U-Net and the same is shown in Figure@ The latter is trained
on ImageNet [37]] dataset with some minor modifications that involve the introduction of skip connections as shown
in Figure[2] This model is fine-tuned by removing fully connected layers and adding a series of batch normalization
convolution ReLU to preserve the gradients at the deeper layers. The outputs from the encoder are concatenated with
the decoder after up-sampling to preserve the sizes. The loss function used is Binary Cross entropy.

3.4 Proposed Attention Modules

At a time, a single attention module is put in all the places marked by A; in Figure[T|during training. Here we describe
the underpinnings of all the proposed attention modules.

3.4.1 Attention Module 1

A spatial soft attention module has been proposed as shown in Figure[3] which can capture spatial context from different
kernel spaces. This idea is inspired by the attention modules proposed in [34} [11} 38, 139] and [40]. The main objective
behind selecting the attention module is to get a compressed form of feature volume, which when added to the incoming
volume of feature space makes the important features more prominent than the less significant features. The successive
application of two 2x2 convolutions supports capturing the receptive field of the corresponding 3x3 kernels; this
eventually enables learning of the important features with fewer parameters. Also, the use of a relatively smaller number
of parameters in the kernels helps to capture the appropriate features only. The resulting volume is passed through a
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Figure 6: Samples of dataset used (from top), Brain MRI dataset, ISIC 2017 dataset, Lung dataset, Skin Lesion dataset, Kvasir-SEG
dataset, Chest X-ray Collection and NERVE Ultrasound segmentation dataset. Some of the image samples from Brain MRI and
NERVE dataset might not have any segmentation mask.

series of two 3x3 convolutional layers to capture the receptive field as that of a 5x5 kernel. Similarly, a series of three
3x3 convolutional layers culminate in a receptive field of 7x7 kernel with a comparatively lesser number of parameters.
This attention module was partly motivated by the Inception module [[19]. Each of the volumes has ReL U activations
that capture positive non-linearity of the feature space. Adding the feature spaces captured by different types of kernels
assists in amplifying the important features, while simultaneously reducing the effect of less important features. The
volumes are multiplied in a similar architectural fashion, and the less weighted feature values will tend to diminish,
giving importance to only the most important features, which will help to converge to a local minimum faster, in turn
creating better attention maps.

The resultant feature maps are then passed through a max pooling layer, which captures the most important feature
by creating an attention map and confining the convolutional feature map to a restricted space. The intention behind
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multiplying the weights with the additive upper block for the upper layer (i.e., Res Path in Figure[I) is to retain the
important features. The less important features receive a lower value in the feature space, thus facilitating the automatic
assimilation of the relevant features. A similar approach is taken for the lower convolutional block. This is followed by
the multiplication of resultant volumes from the lower and upper convolutional blocks to derive the important features
common to both blocks. The resultant attention maps are then upsampled to revert to the original dimension. The
mechanism can aid in the preservation of gradients and features from the upper layer while retaining the influence of
the lower convolutional block. In this process, we use the sigmoid layer as activation to restrict values in the range of 0
to 1. The resulting volume is concatenated with the residual block to fasten the maximization of relevant features.

3.4.2 Attention Module 2

Another spatial self-attention module is proposed as shown in Figure {i] It takes features from the less compressed
residual path and compresses it via 2x2 max pooling. It extends four convolutional layers, since this is the optimum, as
investigated in the ablation studies in section . of the paper later. It takes the compressed feature maps and multiplies
them with each other. It then uncompresses the information captured via upsampling, generating the attention map. The
latter is subsequently multiplied with the features captured by the deeper multi-residual block. The main aim of this
module is to multiply the less compressed features over a succession of four layers and accumulate the information
to get a more meaningful and compact representation of the attention map, this will act as a factor multiplied to the
information of the more compressed layers.

3.4.3 Attention Module 3

The main purpose behind developing this attention module is to take information from two successive layers, i.e., one
less compressed, which may be considered as the upper layer (i.e., Res Path in Figure[T)), and another more compressed
which may be considered as the lower layer (i.e., MultiRes Block in Figure[I)). In U-Net [9]], the lower layers have a
compact representation that helps to capture more relevant information related to a dataset. Taking information from
two blocks, as shown in Figure 5] and multiplying them with one another gives importance to those features which are
important to both blocks. Combining a series of such processing mechanism creates an attention map that helps to
boost the compact information from the lower layer. Ablation studies further explain the rationale behind the choice of
such type of architecture.

3.5 Formulation of Loss Function

The standard binary cross entropy [41] loss function was used for optimizing all the models. Before evaluating the
overall multi-scaled weighted loss function, all the images were rescaled to the original segmentation mask size to
ensure unbiased calculation of losses at individual scales. Suppose Ly (y’, y) is the loss associated with the k-th scale,
where ' denotes the original value, and y, the prediction. The autoencoder has four levels of encoder-decoder structure
and a separate loss is computed at each scale. The overall loss L5 (y', y) is evaluated using the weighted average of the
losses at the individual scales: Ls(y’,y) = 21:1 arLi(y',y), where oy, is the weight associated with the k-th scale.

The weight hyperparameters are normalized by employing the following constraints: Zizl ar=1and 0 < o <1,
where k = 1 to 4. These constraints were also applied to the BO solver to get the set of a;’s which maximizes the Dice
Coefficient x Jaccard i.e., f(x) for each of the datasets as shown in Equation

3.6 Bayesian Optimisation

The overall loss function of the proposed model encompasses unknown hyperparameters o, o, oz and a4 that are
associated with the losses at the different scales. Simple methods for hyperparameter tuning include grid and random
search-based algorithms. We employ here a more sophisticated BO approach to determine the optimal configuration of
the loss function hyperparameters. Such a methodology is preferred in settings involving expensive objective function,
like in the present instance. BO [8] uses Gaussian process as surrogate model to approximate the costly objective
function (see e.g. [42]), and optimizes an acquisition function, which is defined based on the posterior mean and
variance of the proxy, for identifying the next input location for evaluation. The process typically involves making a
trade-off between exploration and exploitation [S]].

The objective function f(z) for BO is taken to be the product of Dice coefficient and Jaccard, i.e.

f(z) := f(aq, a2, as, ay) := Dice Coefficient x Jaccard (1
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| Datasets [ Model Name | Dice Coefficient (%) |  ToU (%) | Precision (%) |
U-Net [9] 66.45 £+ 5.48 57.39 =455 | 56.75 £ 4.36
MultiResUNet [7]] 62.10 & 5.63 53.16 =4.50 | 52.59 +4.38
Brain MRI [2§] Modified U-Net 62.39 + 5.07 53.42 +4.01 52.70 & 3.93
R2U-Net [14] 70.32 +5.03 61.43 +4.68 | 60.76 = 4.64
Attention R2U-Net 68.25 +2.49 59.69 +=2.83 | 59.07 £+ 2.86
Attention U-Net [[1L1]
U-Net 82.36 +4.48 73.95 +533 | 75.21 +£2.50
MultiResUNet 81.67 = 4.10 7276 £4.76 | 76.10 & 4.01
Modified U-Net 82.73 £ 2.11
ISIC 2017 [29) R2U-Net 86.74 +£2.63 79.19 4+ 3.49
Attention R2U-Net 86.49 + 3.90 78.89 +4.78 82.29 £391
Attention U-Net 82.64 +4.24 74.19 £ 497 | 75.06 &£ 1.61
U-Net 95.65 £ 0.57 92.18 = 0.88 | 93.74 +0.45
MultiResUNet 97.07 £0.22 94.65 = 0.25 | 95.25 £ 0.30
Modified U-Net
LUNGS 31l R30-Net 9744 034 9537 £ 0.49 | 95.86 £ 047
Attention R2U-Net 97.34 + 0.35 95.19 = 0.50 | 95.75 £ 0.45
Attention U-Net 96.56 + 0.31 93.76 = 0.56 | 94.84 £+ 0.50
U-Net 86.93 £+ 5.07 78.81 = 6.15 | 83.33 £2.51
MultiResUNet 88.50 £ 1.70 81.06 =2.35 | 84.91 £2.52
Skin Lesion[29] Modified U-Net
R2U-Net 9292 + 145 87.43 £2.18 | 89.05 £+ 1.70
Attention R2U-Net 93.02 + 1.31 87.46 +2.01 88.70 = 1.76
Attention U-Net 87.85 £ 1.67 79.82 +2.40 | 83.28 +=2.00
U-Net 64.59 + 2.91 54.00 =243 | 56.12 £+ 5.66
MultiResUNet 60.36 + 2.57 49.72 £2.04 | 56.43 + 0.00
Modified U-Net 79.34 + 1.21 7042 + 143 | 71.63 £1.79
R2U-Net 77.78 + 1.80 6941 £1.92 | 71.43 £0.00
KVASIR-SEG [3] Attention R2U-Net
Attention U-Net 49.29 +4.13 3891 +3.23 | 37.21 £0.05
U-Net 95.15 £ 0.77 90.87 +1.32 | 91.05+1.36
MultiResUNet 96.67 £+ 0.55 93.64 =097 | 94.41 +0.98
Modified U-Net 97.39 4+ 0.57 9498 +1.03 | 9551 £1.05
CHEST[12]  RaU-Net 97.19 £ 0.62 9461 £ 1.1 | 9520 £ .11
Attention R2U-Net
Attention U-Net 94.67 +1.04 90.06 = 1.78 | 90.24 +1.82
U-Net
MultiResUNet 43.26 + 4.65 36.17 = 3.82 | 35.84 £+ 3.69
Modified U-Net 39.32 +2.67 3229 +£2.07 | 31.99 +1.98
R2U-Net 5498 + 2.15 46.42 £2.03 | 46.02 +2.03
NERVE [33] Attention R2U-Net 54.60 £ 3.01 46.12 £2.59 | 45.79 4+ 2.46
Attention U-Net 52.84 +1.27 4476 £ 1.17 | 44.54 +1.17

Table 1: Results obtained from 5 fold cross validation (presented as mean = standard deviation, u & o) by keeping a batch size of 2,
using Adam optimizer with a learning rate of 1e-05 for different models with no data augmentation. The colour ranks third,
blue colour ranks second and red colour ranks first.

We are now interested in determining the values of the hyperparameters for which this objective function is maximized.
Our implementation works as follows: Firstly, the original dataset is split into training (80%) and test (20%) datasets.
The model is then trained on 80% of the original training dataset (i.e., 64% of the whole dataset) for a particular setting
of the hyperparameters. The f(x) on the remaining portion (20%) of the original training dataset (this will be referred
to as the validation dataset) is considered as the objective function for BO, using the best performing MSAN model.

The BO approach is initialized with 80 different settings of the optimization variables (as), which are sampled from a
Dirichlet distribution, and the corresponding objective function (i.e. Dice coefficient x Jaccard) values. For each such
hyperparameter setting, the model is trained for 100 epochs with the Adam optimizer using a batch size of two, and
then the corresponding f(x) value on the validation dataset is recorded. The popularly used expected improvement [43]]

10
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Figure 7: Comparison of Jaccard Index for LUNGS dataset obtained during training of all models.
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Figure 8: Comparison of Dice Coefficient for CHEST dataset obtained during training of all models.

algorithm is used as the acquisition function, and the Matern kernel is used in the Gaussian process surrogate model to
capture structures in the objective function. We run another 40 iterations for the BO solver with 100 epochs in MSAN
model to get the alpha combination, which adds up to 1 for BMSAN model. The alpha values obtained for each of
the datasets are shown in Table[] The combinations of as which maximizes the function f(x) is again used to train
BMSAN model using k-fold Cross Validation for 150 epochs and the results obtained are shown in Table 3]

4 Results and Discussions

All the experiments were carried out in Asus RTX 2080 Ti (12 GB) and Quadro GV100 (32 GB) GPU machines
with 64 GB RAM using TensorFlow framework [45] and Keras library: https://github.com/keras-team/keras
written in Python3. Adam [46] optimizer was used in the training of the model with Binary Cross entropy [41]] as the
loss function. A small batch size, comprising two images, was used for testing the robustness of the model due to
constraints. Increasing the batch size may marginally improve the overall performance of the models, but consideration
of a small batch size reduces the computational overheads. A learning rate of 1e-05 was selected, which yields standard
performance when compared with other recorded values in the related literature. As medical images are collected in a
constrained environment, there is a need for data augmentation by innovative methods, e.g. polar transformations, as
assessed in Skip-Link Attention Guidance Network (SLAG-CNN) [35] model. The issue is addressed by following
the research methodology of MultiResUNet [[7], and data augmentations were not used anywhere in this study. All
models were trained for 150 epochs beyond which no further improvement was observed in either of the models. BO
implementation is made using GPyOpt toolkit: http://github.com/SheffieldML/GPyOpt. Standard metrics were
calculated and recorded throughout the experiments, i.e., Dice Coefficient (refer to Equation E]) Jaccard Index (refer to
Equation 3], and Precision (refer to equation ) which are widely used in medical image segmentation community.

The graph for Jaccard obtained during training of the Lungs dataset is shown in Figure [/l We can see that our
model is superior to other models during training. The plot is also much smoother than the other models, especially
AttentionR2U-Net and R2U-Net. This can be possibly due to the inherent property of the model to regularize itself,
avoiding kinks in the graph that are potentially caused by exploding gradients [47] in the parameter space. We have
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Brain MRI  ISIC 2017 LUNGS SKIN LESION KVASIR-SEG CHEST NERVE

Original Image

U-Net

MultiResUNet
Modified U-Net -m—‘

R2U-Net

Attention R2U-Net

Attention U-Net

BMSAN

Ground Truth

Table 2: Segmentation masks obtained using a batch size of 2, with Adam optimizer and a learning rate of 1e-05 for different
models. Each dataset has a different level of difficulty. The masks were obtained from the test set with 80-20 train-test split.
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| Datasets Model Name [ Dice Coefficient (%) [  ToU (%) [ Precision (%) |
R2U-Net 70.32 +5.03 61.43 £ 4.68 | 60.76 + 4.64
MSAN-1 57.62 +=9.45 49.40 £ 8.37 | 49.59 + 7.69
Brain MRI [28] MSAN-2 64.24 +5.51 55.13 +4.82 | 54.56 +=4.68
MSAN-3 56.71 = 7.18 48.26 £5.79 | 47.60 +5.62
BMSAN-2 66.35 +7.22 5736 £ 6.85 | 54.73 +4.88
R2U-Net 86.74 + 2.63 79.19 £3.49 | 79.85 £ 1.16
MSAN-1 79.24 + 5.65 70.14 £ 6.31 | 78.70 = 0.17
ISIC 2017 [29] MSAN-2 83.83 +=3.98 75.52 £5.10 | 76.24 +0.50
MSAN-3 86.38 - 2.41 78.65 +£3.06 | 82.34 +3.70
BMSAN-3 86.86 + 2.52 79.57 £2.97 | 79.86 + 0.16
R2U-Net 97.44 + 0.34 95.37 £0.49 | 95.86 &+ 0.47
MSAN-1 97.25 + 0.30 9499 +0.39 | 95.53 +0.34
LUNGS 31} yisan= 9732 £0.18 9511 £0.17 | 95.61 £0.19
MSAN-3 97.38 + 0.26 95.23 +£0.30 | 95.70 £+ 0.27
BMSAN-3 97.49 + 0.29 9540 + 0.44 | 95.86 + 0.53
AttentionR2U-Net 93.02 £ 131 8746 £ 2.01 | 88.70 £ 1.76
Skin Lesion [29] MSAN-1 90.31 + 1.74 83.65 +=2.40 | 86.82 + 1.43
MSAN-2 92.58 +1.30 86.74 +£2.05 | 88.33 +1.39
MSAN-3 9255 +1.12 86.74 +1.74 | 88.50 £ 1.34
BMSAN-2 93.22 + 0.26 87.77 £ 093 | 88.75 + 1.57
Modified U-Net 79.34 + 1.21 7042 +1.43 | 71.63 +£1.79
MSAN-1 62.29 +1.05 5229 +£0.86 | 52.89 +0.78
KVASIR-SEG [32] | MSAN-2 69.34 + 3.39 59.30 +£3.32 | 60.45+4.23
MSAN-3 69.98 + 1.15 5995 +1.02 | 61.23 +2.24
BMSAN-3 70.37 =+ 1.77 6025 +1.63 | 6243 +1.45
Modified U-Net 97.39 + 0.57 9498 +1.03 | 95.51 &£ 1.05
MSAN-1 96.92 + 0.00 94.09 + 0.01 94.77 + 0.01
CHEST [12]] MSAN-2 96.68 + 0.58 93.67 £1.03 | 94.13 = 1.00
MSAN-3 96.49 + 0.59 9330+ 1.04 | 9398 &+ 1.15
BMSAN-1 97.42 + 0.10 95.07 +£ 0.10 | 95.65 £ 0.11
R2U-Net 5498 £ 2.15 3642 £ 2.03 | 4602 £2.03
MSAN-1 54.65 £3.02 4597 £3.80 | 4570 £3.80
NERVE [33] [ MSAN-2 53.59 £ 1.39 4538 F 138 | 45.15 £ 1.40
MSAN-3 52.65£3.82 4438 £323 | 44.14 £3.06
BMSAN-1 55.66 + 1.55 4699 £ 1.25 | 46.75 = 1.21

Table 3: Results obtained from 5 fold cross validation (presented as mean =+ standard deviation, u & o) by keeping a batch size of 2,
using Adam optimizer with a learning rate of 1e-05 for different models with no data augmentation. The results in bold indicate the
best performance for the corresponding dataset. For a particular dataset, BMSAN corresponds to the best MSAN model optimized
using BO.

also shown a comparison of the number of parameters of the model with other models (in million) as shown in Figure
[ The size of our model is relatively small in terms of parameters, making it easier to optimize. This is possibly the
reason why the graph of dice coefficient is much smoother as shown in Figure [§|for the CHEST dataset.

We analyze the performance of different models in terms of Dice Coefficient, IoU (Intersection Over Union, known
as Jaccard) and Precision using a 5 fold cross validation (presented as mean =+ standard deviation, i.e. u + o). A
comparison of the performance of different models employed on the discussed datasets is shown in Table[T] Let us first
discuss the Brain MRI dataset. It can be seen that R2U-Net produces better results in all the three metrics i.e., Dice,
IoU and Precision. This is followed by Attention R2U-Net and Attention U-Net. The results for the Brain MRI dataset
show that the models with the largest number of parameters achieve the best results. Our model i.e., MSAN-2 after
performing BO could not surpass the SOTA R2U-Net for this dataset as shown in Table[3] There is a huge difference in
MSAN-1 and MSAN-2’s result, showing that different attention modules respond differently in segmenting different
dataset. It can also be seen that even Modified U-Net fails to learn meaningful information in this context even when it
is initialized by ImageNet weights.
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No. of parameters in millions

Modified U-Net
MultiResUNet
MSAN-2
MSAN-3
MSAN-1

U-Net

Attention U-Net
R2U-Net

Attention R2U-NET
0 10 20 30 40 50 60 70 80 90 100

Figure 9: Comparison of parameters for all the models starting with Modified U-Net with 1.2 M parameters, MultiResUNet with
7.2 M parameters, MSAN-2 with 11.69 M parameters, MSAN-3 with 14.83 parameters, MSAN-1 with 21.55 M parameters, U-Net
with 31.3 M parameters, Attention U-Net with 31.9 M parameters, R2U-Net with 95.9 M parameters and Attention R2 U-Net with
96.5 M parameters.

Datasets Model o Lo Qs oy Dice Coefficient Jaccard f(z)

Brain MRI MSAN-2 0.074502 0.223438 0.278507 0.421730 0.810567 0.724427 0.587197
ISIC 2017 MSAN-3 0.287012 0.026188 0.173405 0.511562 0.890383 0.822607 0.732435
LUNGS MSAN-3 0.110000 0.000000 0.040000 0.840000 0.970680 0.948244  0.920442

Skin Lesion MSAN-2  0.122950 0.173061 0.088320 0.596683 0.931593 0.876083 0.816153
KVASIR-SEG  MSAN-3  0.080000 0.320000 0.220000 0.370000 0.664659 0.558347 0.371110
CHEST MSAN-1  0.110442 0.159336 0.395935 0.324284 0.965283 0.933954  0.901531

NERVE MSAN-1  0.090000 0.160000 0.430000 0.310000 0.562848 0.477413  0.268711

Table 4: The values of as obtained by training on 64 % of dataset and validating on 16 % of the dataset. The results presented here
may deviate from those in TableE] as the validation dataset may not capture the distribution of the whole dataset.

R2U-Net leads in two performance metrics in segmenting ISIC 2017 dataset, as shown in Table[I] followed by Attention
R2U-Net and Modified U-Net. In comparison to Brain MRI dataset, the ImageNet initialization appears to have
contributed towards the training of a better model for this dataset. It is found that the proposed MSAN model with
Attention Module-3 performs significantly better than the same with Attention Modules 1 and 2, as shown in Table[3]
The performance of MSAN-3 is close to the top-performing SOTA models (see Tables [I|and [3)), but with significantly
lesser number of parameters. However, on optimization using BO, the new BMSAN-3 outperforms all the SOTA
models, producing a new standard.

In case of LUNGS dataset, R2U-Net attains the best performance in all three metrics (see Table EI), followed by
Attention R2U-Net and Modified U-Net. MSAN-3 achieves comparable results in segmenting the dataset as shown in
Table[3] However, MSAN-3 when combined with BO surpasses R2U-Net in performance metrics, thus creating a new
SOTA benchmark in this category. The results demonstrate the efficacy of tuned multi-scale weight hyperparameters in
boosting even the peak performance of models.

Attention R2U-Net surpasses all the models in segmenting the relatively smaller Skin Lesion dataset as shown in Table
followed by R2 U-Net and Modified U-Net. The MSAN segmentation model is found to benefit the most from the
inclusion of the second attention module (see Table[3). Here again, the best-performing MSAN model when combined
with BO outperforms all the SOTA models creating a new standard for the dataset.
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Figure 10: Attention maps generated from the four place-holders for attention modules from bottom to top (i.e., A1, A2, Az and A4
from Figure|[T) by use of GRAD-CAM [44] for different datasets. We select the best performing BMSAN model which have same
attention module in all the four place holders. We collect the attention maps from each of the attention module.

In the case of KVASIR-SEG dataset the performance of our fine-tuned Modified U-Net model outclasses all the other
models. The performance of MSAN models seems to have been affected by the camouflaging of polyps in the flesh,
which possibly leads to confusion in segmentation. It appears that the ImageNet initialization supports the segmentation
of camouflaged objects in comparison to training from scratch. Although the performances of MSAN models are below
expectation, the optimized version (BMSAN-3) attains results better than that of U-Net, Attention U-Net, and MultiRes
UNet (see Tables[T]and [3).

The segmentation results of the CHEST dataset show that our Modified U-Net excels all other models in the performance
metrics (see Table[T). Interestingly, the first MSAN network on optimization creates a new SOTA performance standard
on this dataset (see Table[3).

In the case of NERVE ultrasound dataset, R2 U-Net attains the top-most position in segmentation, performing slightly
better than Attention R2U-Net. BO-based MSAN models again deliver the best results, creating a SOTA benchmark
with the BMSAN-1 model (see Table[3). The final segmentation results from the test set for all the models are displayed
in Table 2] The prediction of BMSAN is taken from the best MSAN model with its attention module (i.e., either 1, 2 or
3) and performing BO using the same. From the table we can see that BMSAN performs significantly better than other
models in segmenting the datasets.
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Remarks Dice Coefficient (%) IoU (%) Precision (%)
Without any attention module, but

with MI, with losses at different scales 91.84 £+ 1.67 85.53+£2.70 87.25+£2.05
Without any attention module,

without MI, but with losses at different scales 92.28 + 1.41 86.37 £2.01 88.08 + 1.25
Without any attention module,

without MI, without losses at different scales 92.40 + 1.27 86.54 +1.84 8822 +1.42
A-3 attention module

without MI, without losses at different scales 92.47 +1.37 86.53 +£2.12 88.27 £ 1.46
A-2 attention module

without MI, without losses at different scales 92.02 + 1.96 86.03 =294 88.30 +2.11
A-1 attention module

without MI, without losses at different scales 89.97 £+ 2.98 82.87 450 85.29 +4.28
Without min pool but everything constant

with A-3 92.01 £0.97 8591 +145 87.38+1.17
Without min pool but everything constant

with A-2 92.56 + 1.32 86.71 £2.01 88.39 £1.05
Without min pool but everything constant

with A-1 90.55 £ 2.46 83.88 £3.62 86.14 +3.24
A-2 with 2 blocks without maxpool 91.58 £1.22 85.37 £1.83 87.26 & 1.39
A-2 with 2 blocks with (2,2) maxpool 92.29 + 1.56 86.44 +£2.26 87.83 +2.02
A-2 with 2 blocks with (3,3) maxpool 92.37 £ 1.03 86.38 £ 1.53 88.10 & 1.32
A-2 with 2 blocks with (4,4) maxpool 91.75 £1.93 85.59 £2.85 87.55+2.31
A-2 with 4 blocks with (3,3) maxpool 92.58 +1.30 86.74 - 2.05 88.33 + 1.39
A-2 with 6 blocks with (3,3) maxpool 91.83 +£0.87 85.70 £ 1.19 87.79 + 0.84
A-2 with 8 blocks with (2,2) maxpool 92.30 £1.21 86.43 +£1.80 88.17 +1.28
A-3 with 2 blocks with (2,2) maxpool 91.64 +£2.22 8523 £3.58 87.10 & 2.61
A-3 with 4 blocks with (2,2) maxpool 92.55 + 1.12 86.74 +1.74 88.50 + 1.34
A-3 with 5 blocks with (2,2) maxpool 92.16 & 1.47 86.08 =2.19 87.62 £ 1.79
A-3 with 6 blocks with (2,2) maxpool 92.55 £1.51 86.79 £2.24 88.31 +1.83
A-3 with 8 blocks with (2,2) maxpool 92.45 + 1.11 86.61 =1.66 88.05 = 1.46
A-3 with 10 blocks with (2,2) maxpool 92.34 £ 1.50 86.64 £2.20 88.89 + 1.50
A-3 with 4 blocks without maxpool 91.61 +2.14 85.26 +3.27 88.63 + 1.39
A-3 with 4 blocks with (3,3) maxpool 91.55 £ 2.05 8530 £2.75 8747 +1.26
A-3 with 4 blocks with (2,2) maxpool

multilpy with upper block 91.85 £ 1.11 8553 +£1.55 87.31+0.76

Table 5: Ablation studies conducted via the Skin Lesion dataset with 5 fold cross validation, batch size of 2 images, and Adam

Optimizer with learning rate 1e-05. The remarks and corresponding metrics are recorded to show the variations.

4.1 Ablation Studies

Ablation studies on the proposed MSAN model were undertaken using the Skin Lesion dataset due to its (relatively)
small size and lower computational requirements. We also discuss the justifications behind certain modifications to the
model. The experiments were performed with 5-Fold Cross Validation using Adam Optimizer and a learning rate of
1e-05 for 150 epochs. Here are some observations: Firstly, eliminating the attention module and keeping everything
else intact results in a dice coefficient of 91.84 £ 1.67 as shown in Table[5] Secondly, removing the attention module
and Multi-scaled inputs (MI), and keeping the losses at different scales (i.e., the multi-scaled losses), yielded a dice
coefficient of 92.28 £ 1.41. We use the acronym MI (multi-scale) here to refer to the multi-scale inputs that were fed at
at the different layers of the encoder (i.e., left blocks), excluding the original image of size I passed to the MultiRes
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Block 1 as shown in Figure[I] It appears that the MI part is not productive for the model, but we will see the actual
motivation for keeping them later. Thirdly, the model without MI part, attention module, and losses at different scales,
gives 92.40 + 1.27 as dice coefficient. Lastly, it can be seen from TableE]that retaining the attention modules without
any MI part and losses at different scales gives varied results for different models. For example, the use of the model
with attention module 3 gives 92.47 4 1.37 as dice coefficient. On the other hand, attention modules 2 and 1 yield dice
coefficient values of 92.02 £ 1.96 and 89.97 + 2.98, respectively. We now eliminate min pooling but retain everything
else the same as in the MSAN model proposed earlier (see Figure[I)). This modification gives dice coefficient values of
92.01 £ 0.97, 92.56 4+ 1.32, and 90.55 =+ 2.46 for attention modules 3, 2, and 1, respectively. The incorporation of
max pooling improves all the results by a slight margin, in general. For example, an improved dice coefficient of 92.58
=4 1.30 is obtained in the case of attention module 2. Further, the use of max pooling in attention module 3 leads to a
considerable improvement in the dice coefficient value (92.55 £ 1.12).

A sensitivity analysis of attention module hyperparameters was undertaken for the selection of the number of convolu-
tional layers and the size of max pooling. First, let us consider attention module 2. It is found that increasing the max
pooling from 2x2 to 3x3 enhances the dice coefficient, but on further increase, there appears to be a loss in information
due to more feature compression. It is observed that the architecture with four convolutional blocks yields optimal
results for this particular attention module, with a corresponding dice coefficient of 92.58 & 1.30 as shown in Table 5]
The improvement in performance could be attributed to the combined effect of tuned components of a well-designed
attention module. The same process is repeated for attention module 3 and it is found that the design with four blocks
with 2x2 max pool gives the optimal dice coefficient of 92.55 + 1.12 (Dice Coefficient) as shown in Table 3]

The attention maps obtained from all four modules are shown in Figure [I0]by the use of GRAD-CAM [44]. Since the
performance on different datasets varied with disparate modules, the best BMSAN model (see Table EII) was selected
for each case. The gradients are visualized in Figure[I0] It is observed that the attention modules in the lower layer
capture less semantic details, but on moving higher, they capture more details, which likely assists in creating better
segmentation masks for corresponding datasets.

5 Conclusions and Future Scope

The work proposes a sophisticated deep learning based architecture for medical image segmentation that improves upon
standard frameworks through the incorporation of novel attention modules and tuning hyperparameters at multiple
scales using BO. Results show that the proposed BMSAN model, with fewer parameters, achieves similar or better
performance than most of the SOTA models in segmenting a wide variety of medical datasets, including ISIC 2017,
LUNGS, NERVE, Skin Lesion and CHEST datasets. The consideration of a multi-scaled loss function helps in faster
convergence of the model and aiding in the incremental reconstruction of segmentation masks. The novel attention
modules also contribute toward attaining superior results by assisting the model in focusing on the relevant regions of
the images. The improved model also benefits from data-specific fine-tuned multi-scale coefficients of the architecture
that are obtained using BO. The consideration of BO adds to the computational requirements, although the probabilistic
model is notable for yielding optimized results with fewer evaluations of the objective function. It is anticipated that the
incorporation and extension of ideas presented in this work can aid in the development of powerful machine learning
models that can be employed in diverse settings. For example, the spatial attention modules can potentially boost the
performance of other models too in disparate tasks, such as classification, detection, etc., in addition to the segmentation
of medical images.

A key feature of this work is the optimization of complex deep learning architectures using a probabilistic approach.
More work could be pursued in this direction. For example, the BO employed here tunes only the hyperparameters
associated directly with the loss function of the model. The scope of the hyperparameters could be expanded to
incorporate some key parameters associated with the architecture itself. Such processes can culminate in the development
of more flexible models that can adapt to the nature and complexity of diverse datasets, unlike the current general trend
of using data-specific models. The challenge from the deep learning side is in identifying a base architecture that is
fluid enough to capture data-specific changes while retaining the capacity to extract and express generic properties of
images (medical images in this case). BO, on the other hand, entails a well-informed selection of key model parameters
for optimization as the probabilistic approach is ideally suited for a relatively smaller number of optimization variables.
An appropriate synthesis of the two paradigms can create powerful models that can solve a wide variety of problems.
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Appendix A. (Performance Metrics)

For quantitative analysis the following performance metrics were used, including Dice Coefficient (DC), Precision
(PC) and Jaccard Similarity (JS) or Intersection over Union (IoU). For calculating these we have to use the following
variables, True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), Ground truth (GT), and
segmented result (SR).

Dice Coefficient, Jaccard Index (IoU) and Precision are calculated using the following equations,

GTNSR
GT N SR
U= o7 0sR ®)
TP
PC=Fp 1 Fp )

The results of 5 Fold-Cross Validation are presented as i & o, where p is the mean and o is the standard deviation of
the five folds given by the following equation,
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