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Introduction

● COVID-19 has changed the way humans interact with the world. It is one of the events in 
history where humans has thrown almost everything to fight the pandemic with science 
and technology. 

● This study deals with the application of Transfer Learning in classifying Chest X-Ray 
COVID-19 images with high Accuracy, Sensitivity and Specificity. 

● Medical sectors also have a tremendous opportunity in applying Artificial Intelligence and 
Deep Learning for leveraging the diagnosis process via automation. 

● Standard known Deep Learning architectures were used as backbones to classify the given 
dataset.†  

● The models used here were previously trained on the ImageNet [2] dataset and were fine-
tuned to get desired results.

†Dataset Retrieved from https://cxr-covid19.grand-challenge.org/Download/ 

https://cxr-covid19.grand-challenge.org/Download/
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Dataset
● There are 3 classes present in this dataset 

[11] as shown in the right. 

● There are 5273 Pneumonia images, 7966 
COVID-19 images, and 8151 Normal 
images of sizes 512x512 and 1024x1024 
(both 3 channel, and grayscale). 

● There is a minor class imbalance.  

● The distr ibution of Training and 
Validation dataset is shown in the Figure 
(on right). 

● The images were rescaled to 360x360 size 
with 3 channels with intens it ies , 
normalised between 0 and 1 before passing 
to the model.

Data distribution across different classes

Normal Covid-19 Pneumonia
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Model Structure

● The architecture of the model which was used to check the performance of validation 
dataset is shown in the figure. 

● We use the backbone model as the convolutional part of all the standard architectures 
that were taken into consideration for the study.



Model Structure

● After the backbone model, a global average pooling was used before passing it to fully 
connected (dense) layer comprising of 128-32-3 neurons. 

● The output layer has 3 neurons corresponding to the 3 classes with Softmax as activation 
function.
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Metrics

● Categorical Cross-Entropy [4] is used as loss function which can be written as: 

● Here, ti is the actual class and si is the predicted class. 

● Accuracy, Sensitivity and Specificity are written as follows: 

● Here, TP is True Positive, TN is True Negative, FP is False Positive, FN is False Negative. 

● Adam optimizer was used with a learning rate of 1e-04. 

● All the models were made using Tensorflow and Keras framework in Python3 language.



Results on the Validation Datasets

● Standard architectures have been used and the 
results were tested on the validation dataset by 
using the same model as shown before. 

● The results obtained from training is shown in the 
Tables (in right). 

● Due to the limitations in memory different batch 
sizes were selected, and the details of each of them 
are shown in the Table (in right). 

● It is worth noting that Inception V3 performs 
better than all of the other models in the validation 
dataset by training on “Training dataset”. 

● The graph across 50 epochs are shown in the next 
slide for training of individual models.



Results on the Validation Datasets
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Confidence of Deep Learning Models 

● Since the VGG-16 model has a relatively good result, it 
has been selected to check the confidence by providing 
different images. 

● Each of the samples shows whether a class is classified 
correctly or is misclassified when provided to the VGG-16 
model. 

● Whenever the model is making any wrong prediction, it 
confidence lies in the wrong class.  

● This makes it challenging to see what actually the neural 
network model learns and what exactly motivates the 
model to make a particular decision. 

● This will help medical practitioners to check the 
authenticity of the predictions of Deep Learning 
architectures.



Visualisation of Filters Learnt

● To visualise the difference between the filters 
learnt, the weights of VGG 16 model before 
transfer learning were used i.e., Figures (a) 
and (c), and after transfer learning, i.e., 
Figures (b) and (d). 

● The figures show that the filters change from 
recognising textures and patterns of the 
natural imagery [13] to problem specific 
images, i.e, Chest X-Ray image features. 

● Even the colours change to grayscale (related 
to X-Ray images). 

● The initial layers learn textures and the final 
layers learn patterns which describe the class 
as a whole.

(a) (b)

(c) (d)



‘Belief’ of Deep Learning Models

● Sometimes the predictions of the Deep Learning models might be very confusing, and 
there may be very less information why the model selects a particular class for a 
particular image. 

● In the next few slides some efforts have been made to justify the confidence or “belief” 
of  the deep learning model via GRAD-CAM [5].

(a) True positive: COVID detected as COVID



‘Belief’ of Deep Learning Models

● From the visualisations, it looks like the model is not taking into account the confidence 
from the final layers only, rather it is taking confidences from the individual layers, 
right from the beginning to the final layers.

(b)  False negative: COVID detected as Normal



‘Belief’ of Deep Learning Models

(c)   False positive: Normal detected as COVID

(d)  COVID detected as Pneumonia
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Ablation Study

● For ablation study, input image size of 500x500, fully connected layers of 1024-1024-3 
neurons, Dropouts or their combinations were used, with VGG16 and InceptionV3 
models. 

● For studies where the above were not used, input image size of 360x360 or fully 
connected layers of 128-128-3 neurons were used. 

● The performance of the two models for different input features was noted and the 
results are shown in the next slide. 

● The results show that it is not necessarily true that the overall performance of Deep 
Learning architecture will increase if individual sub-structures which gives better 
result for a particular setting are combined.  

● Also, a particular structure might not give better result when the backbone model is 
changed, i.e., performance of model and structure is dataset dependent.



Ablation Study (Results on VGG-16 and Inception-V3 models)
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Results on Test Set

● When evaluated on unseen test, the results were a bit 
lower from the one obtained when trained on the training 
dataset and tested on validation dataset. 

● The model which performed the best on Ablation study, 
was selected for the test set. 

● Also, it is worth noting that when the train and 
validation dataset are combined for training the model 
and testing on test dataset, the performance decreases 
slightly. This might be due to the fact that the 
distribution of the combined train and validation dataset 
might be shifted from the individual train and test 
datasets, hence decreasing the performance. 

● Hence the final model obtained was trained on just the 
train dataset and tested on unseen test dataset. Confusion matrix for InceptionV3  

obtained on validation dataset
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Conclusion and Limitations

● Application of Transfer Learning shows that the performance of a deep learning 
architecture can be improved significantly without the use of data augmentation. 

● Ablation studies showed that combining different substructures which performs good 
individually might not result in a better overall structure. 

● It may be confusing for humans to understand what the Deep Learning architecture 
actually sees, hence more transparent way of seeing the “belief” of Deep Learning 
architectures are needed. 

● The model performs best on the distribution of data which it was trained on, so bringing 
data from slightly different domain may result in degradation of performance. Hence 
this cannot be used as a diagnostic tool.
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Future Work

● Since the model doesn’t perform as well as when it was trained on training dataset and 
evaluated on validation dataset, so, combining data from different domains may help to 
learn domain invariant features. So, by performing Domain Adaptation [14] the 
performance of the existing model may be increased. 

● Neural Architecture Search [12] can be used to find the best model for the given 
dataset, but it is a computationally expensive task. 

● Using Attention Module and building different substructures might increase the 
performance of the existing models.
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