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Abstract

Automating blood cell counting and detection from smear slides holds significant

potential for aiding doctors in disease diagnosis through blood tests. However,

existing literature has not adequately addressed using whole slide data in this

context. This study introduces the novel RV-PBS dataset, comprising ten distinct

peripheral blood smear classes, each featuring multiple multi-class White Blood

Cells per slide, specifically designed, for instance segmentation benchmarks.

While conventional instance segmentation models like Mask R-CNN exhibit

promising results in segmenting medical artifact instances, they face challenges

in scenarios with limited samples and class imbalances within the dataset.

This challenge prompted us to explore innovative techniques such as domain

∗Review copy, do not distribute! The codes and datasets will be available at the following
URL upon publication: https://github.com/Jimut123/cellseg and https://github.com/

Jimut123/RV-PBS. The current affiliation of the first author is at the Centre for Machine
Intelligence and Data Science, Indian Institute of Technology, Bombay, Powai, Mumbai,
Maharashtra. This work was a part of M.Sc. thesis while the first author was at RKMVERI.

Email addresses: pal.jimut@iitb.ac.in (Jimut Bahan Pal ),
aniket@abhattacharyea.dev (Aniket Bhattacharyea), debasis_park@yahoo.co.in (Debasis
Banerjee), tamal@gm.rkmvu.ac.in (Br. Tamal Maharaj)

Preprint submitted to Expert Systems with Applications November 26, 2023

https://github.com/Jimut123/cellseg
https://github.com/Jimut123/RV-PBS
https://github.com/Jimut123/RV-PBS


adaptation using a similar dataset to enhance the classification accuracy of Mask

R-CNN, a novel approach in the domain of medical image analysis. Our study

has successfully established a comprehensive pipeline capable of segmenting,

detecting, and classifying blood samples from slides, striking an optimal balance

between computational complexity and accurate classification of medical artifacts.

This advancement enables precise cell counting and classification, facilitating

doctors in refining their diagnostic analyses.

Keywords: Automated blood test, detection, domain adaptation, instance

segmentation, peripheral blood smear

1. Introduction

The peripheral blood smear is a procedure that is used to investigate and

count blood samples (Linden et al., 2012) under a microscope. Getting the

count of different white blood cells (WBCs) may help doctors to diagnose certain

diseases 1. Hematologists regularly receive blood samples (Chadaga et al., 2022;

Kukar et al., 2021) to test for diseases. Because of the lack of present research and

tools, hematologists manually count (Adewoyin & Nwogoh, 2014) and identify

blood cells. This leads to a slow process of generating blood test results. A

typical slide of peripheral blood smear collected from our dataset is shown

in Figure 1. Two types of slides are present in the proposed dataset. First,

annotated instances of smear slides are used for training, as shown in Figure

1a. Second, instances of mixed cells used for testing that are not annotated, as

shown in Figure 1b.

This field lacks automation because of the unavailability of a multi-class

peripheral blood smear dataset, which can suit all demography. Data is annotated

and collected by expert medical practitioners (Bringay et al., 2006). The data

also varies according to demography (Endeshaw et al., 2008; Pal, 2022) and the

process of creation of blood slides to be investigated under a microscope. In this

1https://www.ucsfhealth.org/medical-tests/wbc-count
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(a) An instance of Lymphocyte cell from the

training dataset.

(b) Several instances of cells from the unanno-

tated test dataset.

Figure 1: Samples of typical smear slides containing different White Blood Cells (WBCs) and

Red Blood Cells (RBCs) were collected from our novel RV-PBS dataset. We are interested in

understanding the type of WBC present on a single slide (as shown in purple). RBCs, usually

of biconcave-disc shaped (Hoffman, 2016) and present in enormous amounts, are irrelevant in

predicting the class of WBCs through slides.

study, we introduce a novel 10-class segmentation peripheral blood smear dataset

comprising about 727 images, the Ramakrishna Vivekananda peripheral blood

smear (RV-PBS) dataset. A sample of this dataset is shown in Figure 4. This

dataset is created using Leishman staining as stated in 3. Related studies which

deal with classifying (Acevedo et al., 2019) and detecting (Kouzehkanan et al.,

2022) peripheral blood smears often deal with single-cell per slide. According

to the authors’ knowledge and at the time of writing, this is the first dataset

with many cells per slide for ten different categories. ALL-IDB1 and ALL-IDB2

(Labati et al., 2011) datasets also have many cells per slide but have as little as

108 images which were collected at different magnification ranges, specifically

for research in detecting Leukemia. The proposed data simulate actual settings,

which can help the doctors get an approximate overview of the different cells in

the smear slide. Other studies use a comparatively greater amount of data, i.e.,

about 40K image samples (Kouzehkanan et al., 2022), which have a single cell per

slide with only bounding-box annotations. For this study, our dataset has fewer

images, i.e., 727 smear slides from the RV-PBS dataset, containing a different
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Figure 2: Schematic diagram of the process for extracting cells for domain adaptation pipeline.

We use these extracted cells images to pass to the domain adaptation pipeline from both

datasets. This will help the model focus on only relevant WBC images rather than unnecessary

RBC images. The cells are extracted from the PBC dataset to create C-PBC dataset for

domain adaptation using the algorithm discussed in Section 3.4 is shown at the top. We use

Mask R-CNN to extract cell images from the RV-PBS dataset to create CRV-PBS dataset.

The cell images of the CRV-PBS dataset are passed to the domain adaptation pipeline for

improving classification is shown at the bottom.

number of WBCs per slide. The lower number of images and imbalanced classes

gives us the opportunity to employ different strategies that help the model attain

acceptable performance for benchmarking and deployment.

The process of detection is as follows. Initially, Mask R-CNN (He et al.,

2017) is used to segment and detect the images from the RV-PBS dataset. We

record the detected classes, i.e., 1 of 10 classes. After segmenting, we extract

the cell images for the initial classification pipeline of the 10 classes. Once the

initial classification is done, and if we find the classified class to be one of the 8

common classes (with PBC data as discussed later), we send the extracted cell

image to the domain adaptation pipeline. The domain adaptation (Ganin &

Lempitsky, 2015) pipeline then gives a more refined classification, which helps

to increase the detection capability of the Mask R-CNN pipeline. Since Deep

Learning models need a tremendous amount of data, we use a relatively larger

but similar dataset to perform domain adaptation (Ganin & Lempitsky, 2015)
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Figure 3: A sample of Basophil cell being annotated using CVAT (Computer Vision Annotation

Tool) software to create the RV-PBS dataset.

and improve the current results.

In this paper, we use a similar dataset named PBC normal DIB dataset

(Acevedo et al., 2020, 2019), commonly known as the PBC dataset comprising

17092 images. This dataset shares 8 common classes with the RV-PBS dataset.

This is the reason for choosing only this dataset for the domain adaptation

pipeline since it shares the maximum common classes with our proposed dataset

which is available openly. There are no known existing datasets, according to the

knowledge of the authors and at the time of writing this paper, which has the

maximum number of common classes. We use transfer learning (Zoph et al., 2018;

Pal & Paul, 2021), data augmentations, and various preprocessing techniques

which help to improve a model’s performance. This study mainly focuses on

creating a pipeline for automating the count of WBCs with relatively less and

imbalanced data and using domain adaptation which has not been explored

much in this field of medical image segmentation. In summary, the principal

contributions of this work are -

• We have created a high-resolution novel 10-class peripheral blood smear

dataset, the RV-PBS dataset. The dataset can be used, for instance-
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segmentation benchmarks. To the authors’ knowledge, there is no such

instance segmentation dataset that is available for research that has 10-class

White Blood Cells (WBCs) and multiple different cells per slide.

• Employing Mask R-CNN for cell image extraction from high-resolution

RV-PBS dataset for passing it into the domain adaptation (Guan & Liu,

2022) pipeline. Extensively comparing the SOTA CNN models to get better

feature representation than previously reported (Acevedo et al., 2019) on

the PBC Cropped dataset. Unifying PBC Cropped and CRV-PBS dataset

by using a custom-made non-deep-learning segmentation algorithm.

• Performing domain adaptation using the best selected common transfer

learning network backbone on the cropped images of both the dataset,

i.e., CRV-PBS and C-PBC datasets, and improving the existing metrics,

i.e., precision, recall, and F1-score of classification on the newly created

dataset, making it suitable for benchmarking and deployment.

The overall pipeline is discussed in more detail in Figure 23 of section 4.3.1

of this paper. We structured this paper, beginning with an overview of the

related works, followed by a description of the newly constructed dataset and its

properties. We extensively investigated a similar classification dataset that helped

us to get insights into making a more robust classification pipeline via transfer

learning. The procedure for extracting the cell images to create a preprocessed

dataset has also been discussed briefly. Next, we analyzed the application of Mask

R-CNN in extracting cell images from the RV-PBS dataset, followed by domain

adaptation to improve existing classification accuracy. Finally, we conclude

with future scope and ideas for further progress to convert this research into

production software that could cater to hematologists of different demography.

2. Related work

In the current literature, a wide variety of models can perform medical image

segmentation Pal & Mj (2023) holistically. One such architecture is U-Net
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(Ronneberger et al., 2015), which yields SOTA segmentation results in some

datasets and is widely used for benchmarking. This architecture comprises a

contracting path to capture context and a symmetric expanding path that enables

localization. Researchers have proposed several variants of U-Net (Ronneberger

et al., 2015; Thomas et al., 2021; Zhou et al., 2018; Ibtehaz & Rahman, 2020) in

the current literature that delivers improved performance. The UNet++ (Zhou

et al., 2018) architecture has nested and dense skip connections, potentially

making it more capable of capturing fine-grained details by gradually enriching

the high-resolution feature maps from the encoder network and then fusing

them with the feature maps from the decoder network. Researchers have also

implemented an attention gate in a standard U-Net architecture (Schlemper

et al., 2019; Thomas et al., 2021) that allows the attention coefficient to be more

specific to local regions. Recent studies, exemplified by the Vision Transformer

(ViT) Dosovitskiy et al. (2021), demonstrate that a reliance on convolution is not

essential. Utilizing a pure transformer-basedVaswani et al. (2017) architecture,

originally designed for natural language processing tasks when applied directly

to a sequence of image patches, proves highly effective for image classification.

Some research works have already attempted to address the problem of WBC

differential based on images using Machine Learning (ML) methods (Wang et al.,

2019; Deshpande et al., 2022, 2021). For example, they used object detection

techniques, namely Single Shot Multi-box Detector (SSD) (Liu et al., 2016) and

You Only Look Once (YOLOv3) (Redmon et al., 2016), for 11 types of peripheral

leukocyte recognition. A few of the other well-known deep learning-based object

detection architectures include Faster R-CNN (Ren et al., 2015), Mask R-CNN

(He et al., 2017), Region-based Fully Convolutional Networks (R-FCN) (Dai et al.,

2016) which have been used widely for detection purposes in computer vision.

Researchers have proposed models to solve classification using unsupervised

domain adaptation (Pandey et al., 2020) when cell images are captured from

different lighting and camera conditions. Some scholars have also worked on

self-supervised learning techniques (Zheng et al., 2018) to extract WBCs from

slides via standard k-means and Support Vector Machine (SVM) methods, which
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lack precision segmentation masks. A popular dataset containing about 40K

cell slide images, known as Raabin dataset (Kouzehkanan et al., 2022), has only

bounding boxes of about 5 classes of WBCs in them. The dataset also has

segmentation masks of about 1145 cells for the nucleus and cytoplasm, which can

be used for the early detection of haematologic diseases. Researchers have used

a novel 1K dataset having only point annotation of cells for detection. This is

done by a U-Net-like architecture called as DCNet (Lee et al., 2021) (Differential

Count Network), which detects the cells. However, these methods lack accurate

instance segmentation and detection of cells. The works in the current literature

only detect a limited number of cell types for minimal purposes. Our work

can be used in the medical sector for automating the blood testing procedure

and diagnosing diseases by counting the major types of white blood cells. Our

dataset has 10 classes, proper segmentation masks, and class annotations for all

the cells in the slides. We have used Mask R-CNN (He et al., 2017) in one of

our pipelines for extracting the cells from the RV-PBS dataset.

There have been studies in Unsupervised domain adaptation by backpropa-

gation (Ganin & Lempitsky, 2015), which utilizes labeled data to learn features

from some unlabelled data of similar domains to get domain invariant features.

We use this method for our domain adaptation pipeline. Recent studies leverage

the power of adversarial networks, which outperform models on standard datasets

using data from different domains. Domain adaptation can also be applied in

image segmentation (Murez et al., 2018) problems, but one dataset needs to

have a large number of proper segmentation masks. Researchers have performed

detection (Hsu et al., 2019) by training models via domain adaptation. A few

works in medical sectors (Guan & Liu, 2022) use domain adaptation. Domain

adaptation using generative (Al-qudah & Suen, 2020) latent search can help

to classify cell types. Scientists have also studied different techniques using

standard deep learning (Pandey et al., 2020) architectures, which help to detect

cell types. But all these methods use a large amount of data, and their data

has very little class imbalance, a very less variation in the number of different

classes of the cells. This study explicitly handles the class imbalance and data
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sufficiency problem via domain adaptation.

WBC class name RV-PBS distribution CRV-PBS distribution

Band Cell 60 63

Basophil 26 28

Blast Cell 68 153

Eosinophils 67 93

Lymphocytes 60 62

Myelocytes 83 95

Metamyelocytes 31 32

Monocytes 53 54

Neutrophil 99 116

Promyelocytes 36 56

Mixed for testing 144 NA

Table 1: Distribution of individual classes of WBCs from RV-PBS dataset with 727 slide

images. All the classes except the mixed are annotated using CVAT. The corresponding total

cell count from each class is the distribution of the CRV-PBS dataset.

3. Datasets

3.1. RV-PBS dataset

For this study, we have created a novel WBC dataset comprising 10 classes

known as the Ramakrishna Vivekananda peripheral blood smear (RV-PBS)

dataset. Air-dried peripheral blood smears are stained by Leishman stain

following standard protocol and examined under an oil immersion lens using

10X eyepiece magnification (final magnification–1000X) — photographs taken

by iPhone XR 12-megapixel camera with f/1.8 aperture. The dataset comprises

high-resolution (4032 x 3024) images of blood smear slides. The cell images of

the RV-PBS dataset were annotated using Computer Vision Annotation Tool

(CVAT) (Sekachev et al., 2020) as shown in Figure 3. We show a few samples of

the same in Figure 1. From Figure 1a, we find that there are several artifacts (of
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the same purple color as the WBCs) present on the slide. While creating instance

segmentation masks, we have not included these artifacts. These artifacts are

chemicals released by individual WBCs.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 4: Images of individual samples from the CRV-PBS dataset. There are 10 classes, From

top left: (a) Band Cell, (b) Basophil, (c) Blast Cell, (d) Eosinophils, (e) Lymphocytes, (f)

Myelocytes, (g) Metamyelocytes, (h) Monocytes, (i) Neutrophil, and (j) Promyelocytes. These

samples will be used to do domain adaptation.

Table 1 shows the distribution of individual classes for this dataset under

the column titled RV-PBS distribution. From the table, we can see that the

Basophil class has 26 slides and 28 instances, whereas Neutrophil has 99 slides

and 116 instances. All the slides in the training dataset have the same class of

cells per slide. The mixed slides have different classes of cell types per slide. We

used mixed classes for testing only. All the instances of cells from this dataset

except the mixed class are annotated. This is a developing dataset and we are

planning to add more annotated samples to this dataset in the future.

3.2. CRV-PBS dataset

In the interest of domain adaptation, we extracted individual cells from

the proposed RV-PBS dataset to create this classification dataset, the cropped

RV-PBS (CRV-PBS) dataset. Figure 4 shows the samples of individual classes

of the dataset. The distribution of this dataset is present in Table 1 under the

column titled CRV-PBS distribution. Note that the distribution of slides varies

from the individual cell count. This is because there might be many cells present

on one slide. Since the test mixed class is not annotated, hence individual

cropped cells for each class are not available (NA) as shown in Table 1. This

dataset has a total of 762 cell images. The highest count is blast cell with 153

images, and the lowest count is the class of basophil with 28 images.

10



(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Figure 5: Images of samples taken from the PBC dataset. From top left to bottom right:

(a) Basophil (BA), (b) Eosinophil (EO), (c) Lymphocyte (LY), (d) Monocyte (MO),

(e) Immature Granulocytes (IG), (f) Myelocyte (MY), (g) Metamyelocyte (MMY), (h)

Promyelocytes (PMY), (i) Neutrophil (NEUTROPHIL), (j) Band Neutrophils (BNE), (k)

Segmented Neutrophils (SNE), (l) Erythroblast (ERB), (m) Platelet (PLATELET).

3.3. PBC dataset

This dataset (Acevedo et al., 2020) is retrieved from Mendeley 2 . There are

17092 images of normal cells which are gained using analyzer CellaVision DM96

camera from the Core Laboratory at the Hospital Clinic of Barcelona. These

images are of 360x363 pixel resolution and are present in JPG format. Each of

the individual slides contains only one cell as shown in Figure 5.

This dataset contains 8 classes. Some classes have subclasses, as shown in

Table 2. From Table 2, we can see that the Immature Granulocyte class has 4

subclasses whereas Neutrophil has 3 subclasses. This labeled dataset is used

to benchmark machine learning algorithms that are used for classification. To

the authors of the dataset’s knowledge (Acevedo et al., 2019), this is a first-of-

its-kind canonical dataset for model benchmarking. We have used a standard

convolutional backbone and reported better results than the results previously

reported by the original authors.

2https://data.mendeley.com/datasets/snkd93bnjr/1
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Figure 6: Images of samples taken from the C-PBC dataset. From top left to bottom right:

(a) Basophil (BA), (b) Eosinophil (EO), (c) Lymphocyte (LY), (d) Monocyte (MO),

(e) Immature Granulocytes (IG), (f) Myelocyte (MY), (g) Metamyelocyte (MMY), (h)

Promyelocytes (PMY), (i) Neutrophil (NEUTROPHIL), (j) Band Neutrophils (BNE), (k)

Segmented Neutrophils (SNE), (l) Erythroblast (ERB), (m) Platelet (PLATELET). The

classes in bold show the superclass, which may have individual subclasses of cell types.

Class name Subclass name Total image count

Basophil (BA) 1218

Eosinophil (EO) 3117

Lymphocyte (LY) 1214

Monocyte (MO) 1420

Immature Granulocytes (IG) 2895

Immature Granulocytes (IG) 151

Myelocyte (MY) 1137

Metamyelocyte (MMY) 1015

Promyelocytes (PMY) 592

Neutrophil (NEUTROPHIL) 3329

Neutrophil (NEUTROPHIL) 50

Band Neutrophils (BNE) 1633

Segmented Neutrophils (SNE) 1646

Erythroblast (ERB) 1551

Platelet (PLATELET) 2348

Table 2: Distribution of individual classes of PBC and C-PBC dataset with 17092 images.
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(a) (b) (c) (d) (e) (f) (g)

Figure 7: The process of automating the cropping of the PBC dataset. From top left to

bottom: (a) A sample image from the PBC dataset, (b) the image is converted from BGR to

HSV, (c) mask obtained after applying the lower and upper threshold of blue color, (d) the

dilated mask to make it more prominent, (e) bitwise AND operation with the mask and the

original image, (f) Contours obtained by applying the watershed algorithm on the mask, (g)

The cropped out segmented image.

3.4. C-PBC dataset

We are cropping out only the relevant cell samples from the RV-PBS dataset

to identify WBC samples to create the cropped PBC (C-PBC) dataset. This

will help the domain adaptation pipeline to concentrate on only the essential

information from an image, i.e., the WBCs, and not the textured background or

RBCs. We do this by taking the common image classes from both datasets to

train the domain adaptation pipeline. This motivated us to create a cropped

version of the PBC dataset, the C-PBC dataset. Since each slide has only one

image present, this dataset has the same distribution of classes as the previous

dataset. Samples from this dataset are shown in Figure 6. We use a simple

algorithm to extract images from the PBC dataset.

The algorithm selects a standard image from the PBC dataset as shown in

Figure 7a. It then converts this image from BGR (Blue Green Red) to HSV

(Hue Saturation Value) 3 color scale, as shown in Figure 7b. We handpicked

an average threshold of lower and upper color values that will mask out the

cell in an unsupervised manner. The lower blue has an HSV value of (100, 20,

20), and the upper blue has (300, 245, 245). We mask the HSV image with this

threshold, and the result of this process is shown in Figure 7c. Since there might

be slight noise, we smoothen the mask by using a box kernel of size 3x3 for three

3https://en.wikipedia.org/wiki/HSL_and_HSV
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iterations, as shown in Figure 7d. After obtaining the mask, we perform bitwise

AND operation with the mask to remove irrelevant background and RBCs as

much as possible, as shown in Figure 7e. To extract the individual contours

of cells, we compute the exact Euclidean distance from every binary pixel to

the nearest zero pixels. We select peaks in this distance mask with a minimum

distance of 20. A connected component analysis on the local peaks is used to

select markers 4. We apply the watershed algorithm (Beucher, 1994) using the

peaks, markers, and masks and draw circles as shown in Figure 7f. This is done

since we don’t have any proper mask for extracting the cells from this dataset.

The extraction of cells is done in an unsupervised manner using classical and

traditional techniques since this is a classification dataset, and we need to make

this similar to the other dataset that will be used in the domain adaptation

module. We noted a pattern in the PBC dataset that allows us to crop the

most prominent circle from the center of the image to extract individual cells.

The final image is shown in Figure 7g. We repeat this for every other image

of the PBC dataset to get the C-PBC dataset. In this extraction process, we

considered two assumptions:

• The cells are present in the exact center of the PBC slide.

• The size of the biggest circle detected by the algorithm is the size of the

diameter of the cell. We use this information to crop out relevant squares

from the PBC dataset.

It took 0.1448 seconds to process an image on average using the algorithm.

Efforts were made to remove some artifacts, such as RBCs, but some images,

such as the cell shown in Figure 6b, have traces of artifacts.

4https://pyimagesearch.com/2015/11/02/watershed-opencv/
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Figure 8: The deep learning architecture is used in building the classification models to

compare popular architecture’s convolutional neural network backbones. We use a global

average pooling layer after extracting features from the CNN layer. The last layer has Softmax

as activation, containing the different number of classes as the number of output neurons. In

this model, we have 8 classes as activation outputs.

4. Methodology

4.1. Transfer learning

We apply transfer learning to all the classification datasets that were used in

this study, i.e., PBC, C-PBC, and CRV-PBS datasets. We have used a simple

architecture to compare different popular architectures, as shown in Figure

8. The architecture uses the transfer learning convolutional neural network

backbone, which is replaced with different popular architectures. We needed to

do an evaluative study since some architecture backbone might be good for a

particular dataset (Pal & Paul, 2021) but not good for another. This is only found

out when we actually apply the model and do an extensive benchmarking test

on the datasets (Pal & Paul, 2021). The transfer learning backbone architecture

is followed by a global average pooling layer and a set of fully connected layers.

Input images to the model are of size 360x360x3, i.e., 3-channel RGB images.

The input image is passed through a series of convolutional layers; for example,
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0 15 30 45 60 75 90

VGG 16

Xception

ViT

InceptionV3

Resnet101

InceptionResNetV2

NASNetLarge

No. of parameters (in Million)

Figure 9: The number of parameters in million for different models. VGG16 with 14.78 M,

Xception with 21.12 M, InceptionV3 with 22.06 M, Resnet101 with 42.92 M, InceptionResNetV2

with 54.53 M, and NASNetLarge with 85.43 M parameters.

in the case of the VGG16 model, when using Keras API, just before the Global

Average Pooling, we get a feature volume of size 11x11x512. The Global average

pooling layer in Keras takes the most prominent feature from each of these

512 channels creating a 512 pooled feature vector. This feature vector is fully

connected with a layer containing 128 neurons. The output Softmax layer was

tuned according to the number of classes present in the dataset. We use a set of

three metrics, i.e., precision, recall, and F-1 score, to measure the performance of

different models in different datasets. These metrics are discussed in Appendix

7. The parameters of the models are also shown in Figure 9. Batch size of 8,

learning rate of 1e-04, and other hyperparameters were kept constant in this

study, to ensure proper evaluation of different models.

We incorporated the Vision Transformer (ViT) Dosovitskiy et al. (2021)

architecture, distinguished by its departure from traditional convolutional lay-

ers. Despite this divergence, it seamlessly integrates into our training frame-

work for comparative studies. ViT underwent training akin to conventional

convolutional architectures, with the penultimate layer featuring an equiva-

lent number of fully connected/dense layers. During training, we initially

froze the entire architecture except the penultimate layer, followed by full
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(a) (b) (c) (d)

Figure 10: An illustration showing the patterns that the selected layers of the VGG16 model

learn. Figure 10a and 10c is block2 conv2, one of the initial layers and Figures 10b and 10d

is block5 conv3, one of the final layers. Figures 10a and 10b show the freezed version of the

weights, i.e., the model trained on only the ImageNet dataset capturing the natural imagery’s

features, and the Figures 10c and 10d show the fully trained version of the weights, i.e., the

features that are changed to identify only cell images, hence restricting to a restricted and

specialized problem.

training in a subsequent phase. To integrate ViT, we adapted the openly

available implementation from Keras (https://keras.io/examples/vision/

image_classification_with_vision_transformer/), making specific modifi-

cations. A patch size of 6, as prescribed by the Keras implementation, and

a projection dimension of 64 were utilized as hyperparameters for tuning the

transformer architecture. To maintain consistency, we retained the same batch

size and other hyperparameters for reusability.

The transformer architecture demonstrates precision rates of approximately

95.75% on the C-PBC test dataset and 92.67% on the PBC test dataset as shown

in Table 3. While slightly lower than state-of-the-art architectures, achieving

99.02% precision on the PBC datasets, this variance is attributed to resource

constraints for fine-tuning transformers. Transformer architectures demand

substantial computing resources, and our results reflect the best performance

achievable under these limitations. Transformers are also sensitive to learning

rates, and after an extensive grid search, the reported precision corresponds to

the optimal learning rate identified. However, the transformer’s performance was

suboptimal for the CRV-PBS and PBC datasets. Consequently, we employed the

Xception model for Domain Adaptation, which outperformed across all metrics
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and datasets.

Model Name Dataset Type Precision Recall F1-score

Inception V3 (Szegedy et al., 2016)

C-PBC fully trained 96.01 95.74 95.70

C-PBC freezed 91.15 91.15 90.97

PBC fully trained 98.73 98.88 98.89

PBC freezed 91.61 91.42 91.28

Inception-

ResNetV2 (Szegedy et al., 2016)

C-PBC fully trained 98.84 98.99 98.82

C-PBC freezed 93.73 93.90 93.66

PBC fully trained 99.02 99.07 98.93

PBC freezed 93.60 93.41 93.45

NASNetLarge (Zoph et al., 2018)

C-PBC fully trained 96.63 96.51 96.64

C-PBC freezed 92.51 92.38 92.39

PBC fully trained 98.84 98.92 98.75

PBC freezed 93.63 93.67 93.78

VGG16 (Liu & Deng, 2015)

C-PBC fully trained 98.49 98.29 98.22

C-PBC freezed 95.03 94.85 95.05

PBC fully trained 98.73 98.78 98.69

PBC freezed 93.60 93.23 93.27

Xception (Chollet, 2017)

C-PBC fully trained 98.96 98.81 98.75

C-PBC freezed 93.59 93.46 93.29

PBC fully trained 98.84 98.81 98.75

PBC freezed 91.51 91.19 91.27

Resnet101 (He et al., 2016)

C-PBC fully trained 98.37 98.56 98.40

C-PBC freezed 71.05 68.95 68.47

PBC fully trained 98.84 98.92 98.75

PBC freezed 68.87 70.22 68.03

ViT (Dosovitskiy et al., 2021)

C-PBC fully trained 95.75 94.31 93.16

C-PBC freezed 87.45 86.17 85.39

PBC fully trained 92.67 92.76 92.51

PBC freezed 83.21 82.17 82.10

Table 3: Application of various state-of-the-art models on PBC and C-PBC dataset with

Adam Optimizer, a batch size of 16, and a learning rate of 1e-4 on the test set. Here, only

NASNetLarge has a batch size of 8 because of limited computational resources. The results

are shown in %-age.
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Model Name Precision (%) Recall (%) F1-score (%)

Inception V3 77.41 75.57 74.44

Inception-

ResNetV2
81.07 76.91 74.93

NASNetLarge 61.79 54.37 51.29

VGG16 73.54 72.72 72.62

Xception 82.15 78.80 76.96

Resnet101 72.94 76.84 74.39

ViT 56.76 55.28 54.32

Table 4: Application of various state-of-the-art models on CRV-PBS dataset with Adam

Optimizer and batch size of 16 and learning rate of 1e-4 on the test set. Here, only NASNetLarge

has a batch size of 8 because of computational limitations.
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Figure 11: Plots for the confusion matrix got from (a) The PBC dataset with 8 classes and (b)

The CRV-PBS dataset. The corresponding labels for the PBC dataset are - 0 (Eosinophil), 1

(Neutrophil), 2 (Monocyte), 3 (IG - Inactive Granulocytes), 4 (Basophil), 5 (Erythroblast), 6

(Platelet), 7 (Lymphocyte).
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4.1.1. Experiments

According to the original paper on the PBC dataset (Acevedo et al., 2019),

the researchers used about 80% of the whole dataset in training and the rest 20%

in testing. Among the 80% of the training set, 20% were used as a validation set.

So, they used a 64-16-20 split of the whole dataset as a training-validation-test set.

We have kept this ratio the same for a fair evaluation of standard architectures

and found some other backbone to surpass their VGG-16 and Inception-V3

baselines (Acevedo et al., 2019). We have also used a seed of 42 using Python-

3’s Numpy’s random function to reproduce the dataset split in every scenario

reasonably. To keep things simple, we did not use data augmentation like the

original authors of the dataset. Adam Optimizer (Kingma & Ba, 2015) with a

learning rate of 1e-04 and a batch size of 8 was used for training the datasets.

We perform a similar set of experiments on the CRV-PBS dataset, but here with

only fine-tuned training. We train the entire network to find the best model

to classify the 151 test images. The dataset has 762 images, and we split the

dataset in train-validation-test similarly, i.e., 64-16-20.

The evaluation results on the test set for PBC and C-PBC datasets are shown

in Table 3. We have not used the Accuracy metric in our benchmarking results

since it might mislead with high scores (Johnson & Khoshgoftaar, 2019) and

incorrectly show excellent performance. This is because our dataset is highly

imbalanced, and hence the accuracy metrics will not give meaningful results. The

training datasets, i.e., CRV-PBS and C-PBC datasets, have been augmented to

the same number to alleviate the class imbalance problem. We use a combination

of different training procedures for comparing the metrics. The Freezed version

of the training uses the pre-trained backbone model as it is and only updates

the weights and biases of the fully connected layer. A fully trained mechanism

trains the complete model, i.e., the pre-trained backbone and the fully connected

layer. This comparison is necessary since we wanted to show that even the

features captured by the weights of the ImageNet (Deng et al., 2009) dataset can

successfully classify cell images by tweaking the fully connected layer’s weight
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and biases.

To get an intuition of what the model learns, we have shown the weights

5 that the model learns to respond to in the initial and final layers of the

model as shown in Figure 10. The block2 conv2 (shallow layer of VGG16

model) and block5 conv3 (deeper layer of VGG16 model) are the pre-trained

default layer names available from the standard Keras API, (available at https:

//keras.io/api/applications/vgg/). In Keras, a model.summary() after

invoking the model will give the layer names accordingly. We have used the

following methodology for visualizing the features learned by the model. A

specific loss function, as proposed in (Simonyan et al., 2014), is used, which

maximizes the value of a given filter in a convolutional layer. We use Stochastic

Gradient Descent(SGD) optimizer to adjust the values of the input image (which

is a 360×360×3 size gaussian noise) so as to maximize the activation values.

This process is continued for 80 iterations which continuously maximizes the

response to the input image by adding the gradient to represent those features

that a filter learns to respond to. This analysis is necessary for us to check

what kind of patterns the deep learning model learns to respond to and the

change in the response when we go from pre-trained model to fine-tuned model.

The initial layers of the freezed training capture patterns of natural imagery as

shown in Figure 10a and 10b. The final layers capture more abstract (Zeiler

& Fergus, 2014) features. Similarly, the initial and final layers capture more

problem-specific features, as shown in Figure 10c and 10d, pertaining to cell

images.

4.1.2. Results

Table 3 shows that InceptionResNetV2 (Szegedy et al., 2016) performs the

best in terms of all the metrics in classifying the PBC dataset. The model

achieves a precision of 99.02%, recall of 99.07%, and an F1-score of 98.93%

on the test dataset comprising 2609 images. The training and validation graph

5https://keras.io/examples/vision/visualizing_what_convnets_learn/
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recorded for the model is shown in Figure 12. There are kinks in the plot of

validation precision, which might happen when there are outliers in the data,

which does not help in optimizing using mini-batch gradient descent 6. Confusion

matrix obtained on the test dataset is shown in Figure 11a. The major mistake

the model makes is by predicting lymphocytes as erythroblasts. This is clear

when we see Figure 5, since even normal humans might make the same mistake

as the cells look similar.

From Table 3, we find the C-PBC dataset doing relatively badly in classifying

cells in terms of precision, recall, and F1-score. This might be because of the

neighboring information that is present in the cell, which is unnoticed by the

normal human eye. Here, the Xception (Chollet, 2017) model performs the best

with a precision of 98.96%, recall of 98.81% and an F1-score of 98.75%. We

note this information for further study.
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Figure 12: Training and Validation graph for PBC full dataset. The models were trained for

100 epochs using the fine-tuned procedure, as discussed in Table 3.

The results of the experiments conducted on CRV-PBS datasets are shown

in Table 4, and we find Xception model performs better than others. We assume

more data can capture more features, which will make the metrics even higher.

The Xception model has a precision of 82.15%, a recall of 78.80%, and an

F1-score of 76.96%. The confusion matrix of the Xception model on the test

6https://stats.stackexchange.com/questions/303857/explanation-of-spikes-in-training-loss-

vs-iterations-with-adam-optimizer

22



0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
P
re
ci
si
o
n

Training Precision for CRV-PBC dataset

NASNetLarge

InceptionResNetV2

Inception-v3

Resnet101

Xception

VGG 16

ViT

(a) Training

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

P
re
ci
si
o
n

Validation Precision for CRV-PBC dataset

NASNetLarge

InceptionResNetV2

Inception-v3

Resnet101

Xception

VGG 16

ViT

(b) Validation

Figure 13: Training and Validation graph for CRV-PBS dataset. The models were trained for

100 epochs using the fine-tuned procedure, as discussed in Table 4.

set is shown in Figure 11b. Training and validation loss using the fine-tuned

procedure is shown in Figure 13. While the training graph for precision is

smooth, the validation graph is turbulent. This is because of the unavailability

of a huge amount of data and the class imbalance problem. We address this issue

by performing unsupervised domain adaptation on the common classes of the

C-PBC and CRV-PBS datasets to improve performance in classifying the data.

We find an interesting observation about the Xception model, which performs

better in classifying cropped images. We use this model as the backbone of the

domain adaptation pipeline.

4.2. Mask R-CNN pipeline

For classifying images, we need to extract the cell images from the RV-PBS

dataset. Mask R-CNN (He et al., 2017) can extract the cell images efficiently.

Mask R-CNN outputs bounding boxes, classes present, and precise segmentation

masks of different objects present in an input image. It uses a convolutional

backbone, i.e., Feature Pyramid Network (FPN) for preserving features at

different scales. Mask R-CNN is based upon Faster R-CNN (Ren et al., 2015)

network which uses Region Proposal Networks (RPN). RPN uses bounding

boxes also known as anchors to detect objects faster without searching the

entire image. The major contribution of Mask R-CNN is it uses Region of

Interest (ROI) Align (He et al., 2017) to align features at different scales using
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Figure 14: Training and Validation Losses of Mask R-CNN. The first 200 epochs are for

training the network heads and the rest 200 epochs are for training the entire network of Mask

R-CNN.

the bilinear interpolation method. This helps to remove location misalignment

caused because of ROI pooling, hence, significantly increasing performance in

getting segmentation masks.

4.2.1. Experiments

We have used Matterport’s implementation of Mask R-CNN (available at:

https://github.com/matterport/Mask_RCNN). The architecture uses ResNet

101 backbone for getting the features, which is trained on the MS COCO

(Microsoft Common Objects in Context) (Lin et al., 2014) dataset. The RV-PBS

dataset containing 727 images was divided into 80-10-10, i.e., 80 training, 10

validation, and 10 test to perform training.

Training of Mask R-CNN pipeline was done using Quadro GV100 GPU with

32 GB VRAM. Here we discuss the initial configuration of the training pipeline

which was provided by the package. The physical memory of the computer was

64 GB, hence, 3 images of the RV-PBS dataset of resolution 4032x3024 were

passed to the GPU per step. The dataset has 10 classes and 1 background, hence
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(a) Original image of Basophil cell from the test

set.

(b) Mask R-CNN correctly detecting and seg-

menting the image as Basophil cell.

(c) Original image of Band cell from the test set. (d) Mask R-CNN correctly segmenting the cell,

but incorrectly detecting the cell image as Neu-

trophil cell.

Figure 15: The outputs got from the Mask R-CNN pipeline for the test set of RV-PBS dataset,

detecting and segmenting images.

11 classes per pixel were detected. Steps per epoch were set to 500, whereas the

validation step was set to 30. The confidence of detection was set to 0.7, which

means if the Mask R-CNN model was confident above 70% that an instance of

an object is present, only then it will detect it. For the first 200 epochs, only

the Network heads were trained, i.e., the pre-trained convolutional blocks were

not updating the weights, whereas the next 200 epochs fine-tuned the entire

Mask R-CNN network. The pipeline used Stochastic Gradient Descent (SGD)

(Robbins, 2007) optimizer with a learning rate of 0.001. The momentum of SGD

was set to 0.9 during training.
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(a) Unannotated slide containing different cells. (b) Mask R-CNN detecting and segmenting cells

from the image.

(c) Unannotated slide containing different cells. (d) Mask R-CNN detecting and segmenting cells

from the image.

Figure 16: The outputs got from the Mask R-CNN pipeline for unannotated slides of the

RV-PBS dataset.

The loss of Mask R-CNN (He et al., 2017) can be formulated as:

Ltotal = Lcls + Lbox + Lmask (1)

The graph of Mask R-CNN during training and validation is shown in Figure

14. We show the Box Loss (Lbox) in Figure 14a, the Class Loss (Lcls) in Figure

14b, the Mask Loss (Lmask) in Figure 14c and the Total Loss (Ltotal) in Figure

14d.
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(a) Annotated version of Slide shown in Figure

16a.
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4 Promyelocytes

5 Band Cell

2 Neutrophil

3 Neutrophil

7 Myelocytes

6 Promyelocytes

(b) Annotated version of Slide shown in Figure

16c.

Figure 17: The annotated version of the unseen mixed slide of the RV-PBS dataset shown in

Figure 16, is annotated for testing the effectiveness of Mask R-CNN for out-of-distribution

images.

4.2.2. Results

Mask R-CNN shows promising results in masking the cells present in the

RV-PBS dataset. We see some images are correctly detected, as shown in Figure

15b. Some are incorrectly detected, as shown in Figure 15d. This is because of

the lack of a massive amount of data for training. We assume that training about

5000 images will give excellent results in detecting cells using Mask R-CNN

only. Even though the training was conducted using about 580 images which

contained at max 1-2 instances of cells per slide that too in the center of the

images, Mask R-CNN successfully produced masks for this distribution of slides

which had much more amount of cells different from the training distribution.

From Figure 16b and 16d, we can see that the cells were completely masked

except for one cell in Figure 16b. The pipeline correctly segregated different

instances of the cells present in the slides of the RV-PBS dataset.

The purpose of Mask R-CNN was to correctly segregate different instances of

cells for classification using a domain adaptation pipeline. Here, it successfully

performs its job but the classification capability was not up to the mark as

shown in Figure 16a, 17a, 16d and 16d. The annotated images for the RV-PBS

dataset is shown in Figure 16c and Figure 17b. The results of the Mask R-CNN
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Figure 18: Unsupervised domain adaptation (Ganin & Lempitsky, 2015) pipeline suited to

our problem. We use images from two domains, i.e., C-PBC (top left) and CRV-PBS datasets

(bottom left) for training the domain adaptation model.

pipeline show the effectiveness of Mask R-CNN in segmenting different instances

of cell images. If the training was done using more data, the classification would

have been much better on even out-of-distribution images. This motivates us

to develop the domain adaptation pipeline, which uses similar data of different

domains to improve the existing classification accuracy of the classifiers.

4.3. Domain adaptation framework

It is becoming increasingly popular to re-train deep neural networks with

pre-defined weights, such as ImageNet. Transfer Learning often uses pre-trained

weights for the model, which was trained on a similar dataset, to fine-tune the

deep neural network architecture. This way, the knowledge gathered previously

through training will be used on a similar problem. Domain adaptation is a part

of Transfer Learning, as shown in Figure 19.

4.3.1. Experiments

The domain adaptation pipeline is shown in Figure 18. The formulation of

the domain adaptation model is discussed in Appendix 7. We use unsupervised
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Figure 19: Flowchart showing the hierarchies of Transfer Learning (Pan & Yang, 2010). Domain

adaptation is a subpart of Transfer Learning.

domain adaptation (Ganin & Lempitsky, 2015) for our purpose. The overall

pipeline is shown in Figure 23. We initially used Mask R-CNN to extract the

cells from the RV-PBS dataset along with getting the classes. The extracted

cells are then passed to an initial classifier for screening. If the cells belong

to the common classes, the cell image is passed through a domain adaptation

module, which only uses a label classifier for this task. The Domain Classifier

then outputs the final classification class, thus refining the classification of Mask

R-CNN along with segmenting the classes.

Since medical data prospect under heavy constraints (Willemink et al., 2020),

the data has very little noise and variance. Hence, there is a very mere need for

data augmentations, except for increasing the number of samples. While training

the domain adaptation pipeline, we need to have a number of training samples in

equal quantities from both domains. Hence, we apply a set of data augmentations

to create the training dataset for domain adaptation. We use a probability vector
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Figure 20: Recorded Accuracy and Loss graph for domain adaptation with Source as RV-PBS

and Target as C-PBC dataset. Losses are of Source Classifier (Categorical Crossentropy),

Related Feature Extractor, and Domain Loss (Binary Crossentropy).
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Figure 21: Recorded Accuracy and Loss graph for domain adaptation with Source as C-PBC

and Target as CRV-PBS dataset. Losses are of Source Classifier (Categorical Crossentropy),

Related Feature Extractor, and Domain Loss (Binary Crossentropy).

for performing a series of data augmentations. For this purpose, we choose an

11-length vector to decide whether a particular augmentation will happen, i.e., 1

or not, i.e., 0. This is just a simple design choice which can augment the dataset

in 11 different ways at random. For example, a vector of (1,0,1,1,1,1,1,1,1,1,0)

will decide that only the 2nd and last augmentation will not happen. We select

this vector by giving an equal chance for each of the indices, i.e., while creating

the vector, each cell might have a 0 or 1. There are various types of data

augmentations that were applied to the CRV-PBS dataset. First, since the data

of C-PBC had some background, we can give some random background from

a series of backgrounds. We can set a zoom range between 0.5 to 1 to apply

30



(a) Detected Basophil image by both Mask R-

CNN and domain adaptation pipeline.

(b) Detected Neutrophil class by Mask R-CNN

pipeline whereas Band Cell in domain adaptation

pipeline. The original class is Band Cell.

(c) Unannotated images from RV-PBS dataset. (d) Unannotated images from RV-PBS dataset.

Figure 22: The outputs got from Mask R-CNN and the domain adaptation pipeline combined.

The detected class in black shows the Mask R-CNN output, whereas the detected class in blue

shows the classification and domain adaptation pipeline’s combined output.

to the image. We can flip the image horizontally, vertically, or both with a

probability 1
3 . The camera captured a specific domain, and we applied a colour

transformation to look more specific to that. Like for example, a fiery colour

transform will make the slide look more yellowish, while a cool transform will

make the slide look bluish, which was present in the stain. The colour transform

is applied with a probability of 1
6 .
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Figure 23: The overall pipeline of our work. We extract individual cells via Mask R-CNN from

the RV-PBS dataset. First, we screen the classes by passing them through a classification

model trained solely on the CRV-PBS dataset. If the detected image is in a common class, we

re-verify the image using the domain adaptation pipeline for refining classification.

We can apply repeated Gaussian Blur to fade the image, which will simulate

the out-of-focus for the cell on the camera. This is not so common in medical

images, but we still wanted the algorithm to be robust to these perturbations.

We changed the contrast and brightness to a certain extent with a certain

probability of making different cell samples. We also rotated an image to a

certain angle with a probability of 1
4 in the range [0,90], [90,180], [180,270], and

[270,360]. The common classes which were used for this study were: Basophil,

Eosinophils, Lymphocytes, Myelocytes, Metamyelocytes, Monocytes, Neutrophil,
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and Promyelocytes. These classes were present in both the CRV-PBS and the

C-PBC datasets.

Remarks Precision (%) Recall (%) F1-score (%)

Trained on the 8 common

classes of C-PBC dataset
94.78 94.77 94.79

Above model when used to

classify 8 common classes of

CRV-PBS dataset

4.47 21.29 7.45

Trained on the 8 common

classes of CRV-PBS dataset
82.64 82.25 81.74

Above model when used to

classify common classes of

C-PBC dataset

53.34 24.36 28.29

Model trained on mixed

and classifying the 8 common

classes of C-PBC dataset

95.21 95.45 95.37

Model trained on mixed

and classifying on the 8 common

classes of CRV-PBS dataset

83.98 83.73 84.34

Table 5: The eventual results summarized for the 8 Common Classes datasets and fine-tuning

on the Xception model using a learning rate of 1e-04 and Adam Optimizer.
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Remarks Precision (%) Recall (%) F1-score (%)

Source: 8 common classes of

C-PBC dataset

Target: 8 common classes of

CRV-PBS dataset

Testing on 8 common classes of

CRV-PBS dataset

78.89 78.31 77.11

Source: 8 common classes of

C-PBC dataset

Target: 8 common classes of

CRV-PBS dataset

Testing on 8 common classes of

C-PBC dataset

95.64 95.77 95.89

Source: 8 common classes of

CRV-PBS dataset

Target: 8 common classes of

C-PBC dataset

Testing on 8 common classes of

CRV-PBS dataset

86.71 85.67 84.89

Source: 8 common classes of

CRV-PBS dataset

Target: 8 common classes of

C-PBC dataset

Testing on 8 common classes of

C-PBC dataset

93.11 93.21 93.37

Table 6: The eventual results by performing domain adaptation, summarized for the 8 Common

Classes datasets and fine-tuning on Xception model using a learning rate of 1e-04 and Adam

Optimizer.

4.3.2. Results

While testing domain adaptation, we need to train two times, i.e., using 8

common classes of the C-PBC dataset as the source and 8 common classes of the

CRV-PBS dataset as the target and vice versa. In both cases, we need to find
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the results of the model on the test set of both the dataset. First, we perform

domain adaptation on the source containing 8 common classes of the C-PBC

dataset and the target containing 8 common classes of the CRV-PBS dataset.

When we evaluated the results on the testing set of the 8 common classes of the

CRV-PBS dataset, we get precision, recall, and F1-score as 78.89%, 78.31%

and 77.11% respectively as shown in Table 6. When we test the same model on

the 8 common classes of the C-PBC dataset, we see a slight increase in precision,

recall, and F1-score for the 8 classes. The recorded values are 95.64%, 95.77%

and 95.80% respectively, as shown in Table 6. This is the best we can record for

the 8 common classes combined. The training loss graph is shown in Figure 20.

The loss shows the variation of losses of source classifier and feature extractor,

which gets minimized as training progresses, and domain classifier, which gets

maximized as training progresses. Similarly, the training accuracy captured by

the source classifier during training is also shown in Figure 20. The test data

received an accuracy of 96.32% on 8 common classes of the C-PBC dataset

whereas 82.34% on 8 common classes of the CRV-PBS dataset.

When we perform domain adaptation using 8 common classes of the CRV-

PBS dataset as the source and 8 common classes of C-PBC dataset as the target,

we get the best-recorded results on the test dataset for the 8 common classes of

the CRV-PBS dataset. The precision, recall and F1-score are 86.71%, 85.67%

and 84.89% respectively. The same model, when tested on 8 common classes of

the C-PBC dataset, we get a precision, recall, and F1-score of 93.11%, 93.21%

and 93.37% respectively. Similar losses were recorded for this training in Figure

21. This shows domain adaptation does a good job of improving the classification

of datasets containing common classes.

5. Dicsussion

To compare the classification accuracy of the different classifiers, we have

performed a comparative study, as shown in Table 5. We trained the dataset

on about 13050 images from the 8 common classes of the C-PBC dataset and
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about 544 images from the 8 common classes of the CRV-PBS dataset without

performing data augmentations. The split of the dataset was about 80% for

training and 20% for testing. We trained the Xception model, which showed

exceptional performance in both the datasets on 8 common classes of the C-PBC

dataset, recording a precision of 94.78%, recall of 94.77% and F1-score of

94.79%. Note that this is lesser than the metrics recorded when the model was

trained on the C-PBC dataset, this is because of lesser data used in training the

8 classes of the same dataset. The model trained on 8 common classes of the

C-PBC dataset when tested on 8 common classes of the CRV-PBS dataset gives

lower results compared to doing vice versa. It seems like when a model is trained

on 8 common classes of CRV-PBS data; it can classify the C-PBC dataset better

than when the reverse is done. This may be because of the high-quality images

of our dataset. For further study, we mix the data from both the datasets and

perform an overall training which gives overall good results as shown in Table 5.

The results of the full pipeline are shown in Figure 22. We can see that the

classification of the 8 common classes has improved using the domain adaptation

pipeline. The detected class above the box in black color shows the initial class

detected by the Mask R-CNN pipeline, whereas the detected class below the

box in blue shows the result of the domain adaptation pipeline. We can see that

the incorrect detection of Neutrophil is now correctly classified as a Band cell

in Figure 22b. The case is unique in segmenting the mixed classes as shown

in Figure 22c and Figure 22d. We see that a combination of both results will

increase the performance in classifying the type of cell. In some worst cases, the

domain adaptation pipeline might give wrong results when there is confusion

about the labeling of the cells. We assume that training in more amount of data

via Mask R-CNN will increase the segmentation and classification accuracy of

the pipeline. This is novel research that builds a full pipeline from scratch to

segment and detects all 10 classes of blood cell images according to Kolkata’s

demography. This work can be extended to count all the blood cell types by

generating automated blood test reports with just minor modifications. The

JSON data that is extracted from the model can get the count and types of cells
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at a very reasonable speed, hence automating a major part of the healthcare

industry.

5.1. Future scope

Because of the efficiency of Mask R-CNN in segmenting cells, we have

developed a tool to point toward a folder containing several smear slides, and

the tool will generate information regarding the type of cell and polygon masks

of different cells present in the slide. In the future, we are planning to create an

annotation tool that will leverage the masking capabilities of Mask R-CNN to

automate the masking of newer slides. The annotator might have a minimum

intervention to mask the out-of-distribution images. In this way, we can label a

huge amount of slides in no time. The result of the JavaScript Object Notation

(JSON) data generated is shown below:
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{"data":

{"0":

{"filename":"IMG_4302.jpg", "height":3024,"width":4032,

"masks":

[

{"class_name":"neutrophil","score":0.9632735252,

"bounding_box": { "x1":22, "x2":740,

"y1":436,"y2":1169},

"vertices":[[397.0,1142.5], ... ,

[396.0,1141.5], [397.0,1142.5]]},

....

{"class_name":"neutrophil", "score":0.9132735252,

"bounding_box": {"x1":223, "x2":940,

"y1":936, "y2":1769},

"vertices":[[223.6,940.5], ... ,

[224.3,939.4], [223.6,940.5]]}

]

},

"1": {...}

...

}

}

---------------------------------------------------------------

A sample of JSON file generated using Mask R-CNN based tool

This data can be ported in any format. For our purpose, we have used CVAT

annotation format in Extensible Markup Language (XML). In the future, we

may create our own tool and it may have our own format for easy annotation.

This is the future goal of this project, to create tools that will make the model

learn new features actively with minimum human intervention.
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5.2. Computational requirements and Complexities of the models

The analysis of model complexities in our study is meticulously presented in

Table 7 and Table 8, considering a comprehensive set of statistical metrics. These

metrics encompass the number of convolutional layers and fully connected (dense)

layers, total, trainable, and non-trainable parameters (in millions), memory

utilization (in Gigabytes), file size (in Megabytes), as well as average training

and inference times indicated as mean ± standard deviation ( µ ± σ in seconds).

It is noteworthy that all models underwent training on a singular NVIDIA

GeForce RTX 3080 Ti GPU, implying potential variations in these statistics

when utilizing alternative GPU configurations.

Table 7 presents the outcomes of our experiments (discussed in Sections 4.1.1

and 4.1), utilizing the PBC and C-PBC datasets to identify the most effective

convolutional backbone for both datasets. The observations from Table 7 reveal

that, as a rule, the convolutional backbone adopted from state-of-the-art (SOTA)

models was chosen, with three dense layers following flattening, as discussed

in Section 4.1. It’s worth noting that the relationship between the number of

parameters and training time is not strictly linear; while larger parameter counts

tend to extend training durations, this dependency can be influenced by the

internal connectivity patterns (Vento & Percannella, 2019) within the model.

More intricate architectures may demand additional computational resources

and training time, even when the parameter count is relatively lower than that

of a simpler architecture. The number of trainable parameters, referring to the

model’s weights and biases requiring updates during training, plays a crucial role.

Although the total parameter count remains constant, training time per epoch

fluctuates based on the number of parameters undergoing updates. Generally, a

frozen model variant consumes less time than a fine-tuned one that necessitates

the entire model to be trained. In summary, the statistics in Table 1 highlight

that models with more parameters tend to demand more time for both training

and inference compared to models with fewer parameters.

In this paper, we describe the GPU memory requirement, specifically ad-

dressing the memory needed to process a single batch of data in gigabytes (GBs).
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We have developed a dedicated function to estimate the memory consumption

of deep learning models when handling data in batch mode. Our function is

implemented using the TensorFlow Keras backend and is designed to analyze

model complexities comprehensively. It calculates memory usage for each layer’s

output shape, recursively accounts for internal sub-models, and provides detailed

statistics, including trainable and non-trainable parameter counts. Additionally,

it determines the size of a single numerical element and calculates the total

memory usage in bytes, converting it into gigabytes. This functionality serves

as an indispensable tool for both researchers and practitioners, offering valu-

able insights into the memory requirements of deep learning models. It can be

instrumental in making informed decisions regarding resource allocation and

optimization strategies across various computational contexts. It is noted that

more complex models require much more memory footprint than that of lower

complexity models.

In our study, we extend our experiments to encompass the CRV-PBS dataset,

presenting the resulting statistics in Table 8. These findings are similar to those

elucidated in Table 7, as detailed in Sections 4.1.1 and 4.1. In the context of

selecting an optimal backbone for our Domain Adaptation pipeline, elaborated

in Section 4.3, we have chosen the Xception model. This choice stems from its

superior performance in classifying both datasets. Notably, the Xception model

stands out with a lower number of convolutional layers compared to most models,

resulting in reduced inference and training times, particularly when applied to

the CRV-PBS dataset. Our approach strikes a balance, emphasizing a trade-off

between reduced inference time for most models while maintaining accuracy and

precision in prediction. The experimental results underscore the effectiveness

of our model in achieving this balance, yielding an optimized, lower-complexity

model with faster inference and training times than most models, all while

enhancing classification prediction accuracy and precision.
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Model

Name

Dataset

Name

Training

Type

Total # of

Conv Layers

Total # of

Dense Layers

Total

Params (M)

Trainable

Params (M)

Non-Trainable

Params (M)

Memory

Usage (GB)

File Size

(MB)

Train Epoch

time (in s)

Inference

time (in s)

Inception V3

C-PBC fully trained 94 3 22.0694 22.0350 0.0344 2.8340 253.6688 119.7687 ± 9.8956 0.0644 ± 0.0390

C-PBC freezed 94 3 22.0694 0.2667 21.8028 2.8340 87.0698 117.4597 ± 5.2568 0.0744 ± 0.0555

PBC fully trained 94 3 22.0694 22.0350 0.0344 2.8340 253.6688 148.1968 ± 41.0319 0.0773 ± 0.0516

PBC freezed 94 3 22.0694 0.2667 21.8028 2.8340 87.0698 159.4549 ± 38.7494 0.0867 ± 0.0963

Inception

ResNetV2

C-PBC fully trained 244 3 54.5379 54.4773 0.0605 7.0000 626.9535 215.2427 ± 7.4374 0.0712 ± 0.0636

C-PBC freezed 244 3 54.5379 0.2011 54.3367 7.0000 211.5637 162.4180 ± 10.2264 0.1121 ± 0.0828

PBC fully trained 244 3 54.5379 54.4773 0.0605 7.0000 626.9653 223.7845 ± 0.7555 0.0729 ± 0.0535

PBC freezed 244 3 54.5379 0.2011 54.3367 7.0000 211.5637 135.6346 ± 6.2723 0.0783 ± 0.0603

NASNetLarge

C-PBC fully trained 268 3 85.4374 85.2408 0.1967 17.6370 981.3203 462.1109 ± 1.4508 0.0765 ± 0.0731

C-PBC freezed 268 3 85.4374 0.5206 84.9168 17.6370 332.6796 189.3978 ± 1.0356 0.0736 ± 0.0137

PBC fully trained 268 3 85.4374 85.2408 0.1967 17.6370 981.3203 459.2430 ± 1.4518 0.0889 ± 0.0256

PBC freezed 268 3 85.4374 0.5206 84.9168 17.6370 332.6796 218.1738 ± 3.1188 0.0798 ± 0.0536

VGG16

C-PBC fully trained 13 3 14.7847 14.7847 0.0000 2.3970 169.3445 151.5882 ± 0.6383 0.0461 ± 0.0099

C-PBC freezed 13 3 14.7847 0.0701 14.7147 2.3970 57.0247 87.7355 ± 0.4555 0.0462 ± 0.0096

PBC fully trained 13 3 14.7847 14.7847 0.0000 2.3970 169.3445 150.3752 ± 0.8648 0.0461 ± 0.0099

PBC freezed 13 3 14.7847 0.0701 14.7147 2.3970 57.0247 87.5087 ± 2.4485 0.0464 ± 0.0106

Xception

C-PBC fully trained 40 3 21.1281 21.0736 0.0545 5.5510 242.1414 140.1736 ± 0.2560 0.0478 ± 0.0201

C-PBC freezed 40 3 21.1281 0.2667 20.8615 5.5510 83.0389 91.1776 ± 0.4915 0.0476 ± 0.0201

PBC fully trained 40 3 21.1281 21.0736 0.0545 5.5510 242.1414 140.3787 ± 0.3783 0.0475 ± 0.0177

PBC freezed 40 3 21.1281 0.2667 20.8615 5.5510 83.0389 90.0230 ± 1.3435 0.0474 ± 0.0199

Resnet101

C-PBC fully trained 104 3 42.9248 42.8195 0.1053 8.9790 492.3575 202.0621 ± 0.5078 0.0554 ± 0.0357

C-PBC freezed 104 3 42.9248 0.2667 42.6582 8.9790 166.7687 111.0408 ± 1.2891 0.0559 ± 0.0327

PBC fully trained 104 3 42.9248 42.8195 0.1053 8.9790 492.3575 202.2891 ± 0.8241 0.0569 ± 0.0338

PBC freezed 104 3 42.9248 0.2667 42.6582 8.9790 166.7687 110.6711 ± 0.3967 0.0546 ± 0.0320

ViT

C-PBC fully trained 0 19 21.6575 21.6575 0.0000 10.3453 242.48 154.34 ± 0.4521 0.1232 ± 0.0467

C-PBC freezed 0 19 21.6575 0.2667 21.3908 10.3453 162.23 102.33 ± 1.2134 0.0829 ± 0.0324

PBC fully trained 0 19 21.6575 21.6575 0.0000 10.3453 242.48 154.34 ± 0.4521 0.1202 ± 0.0578

PBC freezed 0 19 21.6575 0.2667 21.3908 10.3453 162.23 102.33 ± 1.2134 0.0874 ± 0.0864

Table 7: The assessment of model complexities for all models trained on the PBC and C-PBC datasets involves the application of state-of-the-art

models with a batch size of 16 and a learning rate set at 1e-04 for evaluation on their respective datasets. Throughout, ’M’ represents millions, ’GB’

signifies Gigabytes, and ’s’ stands for seconds in our context. All the models were trained and tested using a single NVIDIA GeForce RTX 3080 Ti

GPU.
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Model

Name

Total # of

Conv Layers

Total # of

Dense Layers

Total

Params (M)

Trainable

Params (M)

Non-Trainable

Params (M)

Memory

Usage (GB)

File Size

(MB)

Train Epoch

time (in s)

Inference

time (in s)

Inception V3 94 3 22.0695 22.0351 0.0344 2.8340 253.6691 57.3908 ± 0.8968 0.1043 ± 0.0864 1

Inception

ResNetV2
244 3 54.5379 54.4774 0.0605 7.0000 626.9542 152.2778 ± 1.1853 0.2043 ± 0.3543

NASNetLarge 268 3 85.4375 85.2408 0.1967 17.6370 981.3203 245.2935 ± 1.0038 0.2442 ± 0.0342

VGG16 13 3 14.7848 14.7848 0.0000 2.3970 169.3453 100.7890 ± 0.6179 0.2033 ± 0.0192

Xception 40 3 21.1282 21.0737 0.0545 5.5510 242.1432 105.0321 ± 2.3296 0.1522 ± 0.0689

Resnet101 104 3 42.9249 42.8196 0.1053 8.9790 492.3583 157.7575 ± 3.1522 0.2447 ± 0.1200

ViT 0 19 21.6575 21.6575 0.0000 10.3453 242.48 98.7612 ± 0.7352 0.2763 ± 0.4154

Domain Adaptation

Xception model
40 6 28.3379 28.2834 0.0545 1.8070 324.6068 134.6777 ± 0.4488 0.1007 ± 0.0493

Table 8: The assessment of model complexities for all models trained on the CRV-PBS dataset entails the utilization of state-of-the-art architectures.

These models were tested with a common batch size of 16 and a learning rate of 1e-04, tailored to their respective datasets. Notably, the Domain

Adaptation model was trained on a combined dataset comprising the 8 common classes of CRV-PBS and PBC cropped. It’s important to note that

’M’ represents millions, ’GB’ signifies Gigabytes, and ’s’ stands for seconds in our context. All the models were trained and tested using a single

NVIDIA GeForce RTX 3080 Ti GPU.
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6. Conclusion

In this study, we created a novel dataset comprising peripheral blood smears

for benchmarking instance segmentation pipelines. Through investigations, we

have noticed that Mask R-CNN alone cannot provide high classification accuracy,

so we use innovative techniques such as domain adaptation to increase the

performance of classification. Since the creation and collection of blood smear

data are very expensive, we rely on imbalanced and fewer source data and

a similar target dataset for this task. The convolution backbone for domain

adaptation has been selected by performing a comparative study using transfer

learning, which shows excellent results in both datasets. Using domain adaptation

successfully enhances the classification performance of the Mask R-CNN pipeline.

Our statistical experiments examining computational complexities reveal that our

Domain Adaptation model excels in achieving a harmonious equilibrium among

key computational resources, including the number of parameters, training time,

and inference time. Importantly, this balance is achieved without compromising

on the model’s ability to deliver notably superior accuracy and precision in

classifications compared to alternative models.

The initial comparative study on classifying the PBC dataset shows we can

surpass the state-of-the-art by using whole slides rather than cropped cells. Using

transfer learning helps to get impressive performance with relatively less amount

of data. This will help the medical practitioners and doctors to cater to a large

group of individuals in the time of emergency. The current research provides

the outline of the creation of a larger dataset that can get deployable results

even by the use of Mask R-CNN. The only limitation of this work is the current

metrics record precision of 86.71%, a recall of 85.67%, and an F1-score of 84.89%

even after domain adaptation. Medical sectors need stronger confidence in the

detection of cell types for automating the process of blood tests. Increasing the

dataset size will help to resolve this issue, for which we are planning to add

more data soon. We are also planning to release the data for a benchmarking

challenge which will test the precision, recall, and F1-score of different novel
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methods. The future scope of this work lies in the creation of an annotation

software that can annotate a diverse domain of peripheral blood smear data

automatically with minimum human intervention.
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7. Appendices

Appendix A. Evaluation metrics

In this work, the following evaluation metrics are used:

Accuracy (AC) =
TP + TN

TP + TN + FP + FN
(2)

Recall or Sensitivity (SE) =
TP

TP + FN
(3)

Precision (PC) =
TP

TP + FP
(4)

F1-Score =
2× (PC × SE)

PC + SE
(5)

Where TP is True Positive, TN is True Negative, FP is False Positive and

FN is False Negative. The binary Cross-Entropy loss function was used in the

Domain Classifier. It can be formulated as:

Ly′(y) := − 1

N

N∑
i=1

(y′i log(yi) + (1− y′i) log(1− yi)) (6)
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Where yi is the predicted class and y′i is the original class value (log = ln,

natural log). Categorical Cross-Entropy loss function can be written as :

Ly(y
′) := − 1

N

(
N∑
i=1

y′i · log(yi)

)
(7)

Where yi is the predicted class, and y′i is the true value of a label predicted,

generally in one-hot-encoded form.

Appendix B. Unsupervised Domain Adaptation

Here is a brief discussion of Ganin’s (Ganin & Lempitsky, 2015) Unsupervised

domain adaptation. Let us consider input x passed to the domain adaptation

pipeline. Here, x ∈ X and y ∈ Y are input images and corresponding label pairs.

We can consider two distributions, i.e., 8 common classes of CRV-PBS as source

S(x, y) and 8 common classes of C-PBC as Target T (x, y) distribution. Since

we are taking the common classes from both datasets, the images might differ

by some domain shift. The primary aim of the domain adaptation pipeline is to

predict Y from X. During training, we take a huge number of samples from the

target distribution, which helps the classification model to improve classification

performance on the source distribution.

Since there are two domains of similar data, we have an extra parameter to

consider, i.e., domain d,

di =

0, if xi ∈ Source domain, yi ∈ Y are known

1, if xi ∈ Target domain, yi ∈ Y are necessarily not known

The task is to predict the target domain’s input samples in test time. For every

input sample x ∈ X, we can use a Feed Forward Deep Learning Convolutional

Neural Network to predict y ∈ Y and its corresponding domain labels di ∈

{0, 1}. From Figure 18 we get a D dimensional feature vector f ∈ RD by

passing x through Gf . Here, we have used the Xception (Chollet, 2017) model’s

convolutional backbone as Gf for extracting features, since it performed relatively

well in classifying the cropped cell images of both domains.
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During training, we try to minimize the loss of Gf and Gy, i.e., feature

extractor and label predictor. This is done by passing images from both the

domains, i.e., S(x, y) and T (x, y) to Gf . We try to make these two distributions,

i.e., source, S(f) = {Gf (x; θf )∥x ∈ S(x)} and target, T (f) = {Gf (x; θf )∥x ∈

T (x)} as close to each other. We try to maximize the loss of the Domain classifier,

i.e., Categorical Cross-Entropy loss, as discussed in Appendix 7. This helps the

model get more confused about the domains in which the images belong, hence

the model learns domain invariant features θf . The total loss can be formulated

as:

E(θf , θy, θd) =
∑

i=1..N
di=0

Ly

(
Gy(Gf (xi; θf ); θy), yi

)
−

λ
∑

i=1..N

Ld

(
Gd(Gf (xi; θf ); θd), yi

)
(8)

=
∑

i=1..N
di=0

Li
y(θf , θy)− λ

∑
i=1..N

Li
d(θf , θd)

Here, since the label predictor Ly(., .) is a classifier, hence the loss is multino-

mial. Similarly, Ld(., .), the domain classifier loss is logistic. Li
y and Li

d are the

corresponding loss functions that are evaluated at the ith training example. We

are seeking the parameters θ̂f , θ̂y, θ̂d that deliver a saddle point of the function:

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf , θy, θ̂d) (9)

θ̂d = argmax
θd

E(θ̂f , θ̂y, θd) . (10)

At the saddle point, θd of the domain classifier minimizes the domain classifi-

cation loss, while parameters θy minimize the label predictor loss. Discriminative

features are learned by the label predictor. It maximizes the domain classification

loss learning domain invariant features. The overall architecture of this process

can be seen in Figure 18.
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Standard optimizers such as Stochastic Gradient Descent can be used as

optimizers. The stationary saddle point is a part of the following stochastic

updates, where µ may be considered as the learning rate, which may vary over

time:

θf ←− θf − µ

(
∂Li

y

∂θf
− λ

∂Li
d

∂θf

)
(11)

θy ←− θy − µ
∂Li

y

∂θy
(12)

θd ←− θd − µ
∂Li

d

∂θd
(13)

A special layer known as Gradient Reversal Layer (GRL) can achieve the

reduction as shown in Equation 11. The layer is inserted between the feature

extractor and the domain classifier, as shown in Figure 18. The meta-parameter

is not updated by back-propagation. During forward propagation, GRL acts

as an identity transform. During back-propagation, the GRL multiplies the

gradient by -λ and sends it to the previous layer. Hence the total loss can be

formulated as 14

Ẽ(θf , θy, θd) =
∑

i=1..N
di=0

Ly

(
Gy(Gf (xi; θf ); θy), yi

)
+

∑
i=1..N

Ld

(
Gd(Rλ(Gf (xi; θf )); θd), yi

)
(14)

After learning the label predictor, y(x) = Gy(Gf (x; θf ); θy) can predict inputs

from both the domains.
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