Advancing Instance Segmentation and WBC Classification
in Peripheral Blood Smear through Domain Adaptation: A
Study on PBC and the Novel RV-PBS datasets

Jimut Bahan Pal®? (pal.jimut@iitb.ac.in), Aniket Bhattacharyea®
(aniket@abhattacharyea.dev), Debasis Banerjee? (debasis_park@yahoo.co.in), Br.

Tamal Maharaj® (tamal@gm.rkmvu.ac.in)

¢ Department of Computer Science, Ramakrishna Mission Vivekananda Educational
and Research Institute, Howrah, India

b Centre for Machine Intelligence and Data Science, Indian Institute of Technology,

Bombay, Powai, Mumbai, 400076, India

¢ Department of Mathematics, Ramakrishna Mission Vivekananda Educational and

Research Institute, Belur Math, Howrah, India

4 School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and

Research Institute, Belur Math, Howrah, India

Corresponding Author:

Jimut Bahan Pal

CMInDS Fellow & Prime Minister’s Research Fellow

Centre for Machine Intelligence and Data Science, Indian Institute of Technology,
Bombay, Powai, Mumbai, 400076, India.

Email: pal.jimut@iitb.ac.in

Advancing Instance Segmentation and WBC
Classification in Peripheral Blood Smear through
Domain Adaptation: A Study on PBC and the Novel
RV-PBS datasets

Jimut Bahan Pal®"* Aniket Bhattacharyea®, Debasis Banerjee?, Br. Tamal
Maharaj?®

% Department of Computer Science, Ramakrishna Mission Vivekananda Educational and
Research Institute, Howrah, India
bCentre for Machine Intelligence and Data Science, Indian Institute of Technology, Bombay,
Powai, Mumbai, 400076, India.

¢Department of Mathematics, Ramakrishna Mission Vivekananda Educational and Research
Institute, Belur Math, Howrah, India

dSchool of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research
Institute, Belur Math, Howrah, India

Abstract

Automating blood cell counting and detection from smear slides holds significant
potential for aiding doctors in disease diagnosis through blood tests. However,
existing literature has not adequately addressed using whole slide data in this
context. This study introduces the novel RV-PBS dataset, comprising ten distinct
peripheral blood smear classes, each featuring multiple multi-class White Blood
Cells per slide, specifically designed, for instance segmentation benchmarks.
While conventional instance segmentation models like Mask R-CNN exhibit
promising results in segmenting medical artifact instances, they face challenges
in scenarios with limited samples and class imbalances within the dataset.

This challenge prompted us to explore innovative techniques such as domain

*Review copy, do not distribute! The codes and datasets will be available at the following
URL upon publication: https://github.com/Jimut123/cellseg and https://github.com/
Jimut123/RV-PBS. The current affiliation of the first author is at the Centre for Machine
Intelligence and Data Science, Indian Institute of Technology, Bombay, Powai, Mumbai,
Maharashtra. This work was a part of M.Sc. thesis while the first author was at RKMVERI.

Email addresses: pal.jimut@iitb.ac.in (Jimut Bahan Pal),
aniket@abhattacharyea.dev (Aniket Bhattacharyea), debasis_park@yahoo.co.in (Debasis
Banerjee), tamal@gm.rkmvu.ac.in (Br. Tamal Maharaj)

Preprint submitted to Expert Systems with Applications November 26, 2023

https://github.com/Jimut123/cellseg
https://github.com/Jimut123/RV-PBS
https://github.com/Jimut123/RV-PBS

adaptation using a similar dataset to enhance the classification accuracy of Mask
R-CNN, a novel approach in the domain of medical image analysis. Our study
has successfully established a comprehensive pipeline capable of segmenting,
detecting, and classifying blood samples from slides, striking an optimal balance
between computational complexity and accurate classification of medical artifacts.
This advancement enables precise cell counting and classification, facilitating
doctors in refining their diagnostic analyses.

Keywords: Automated blood test, detection, domain adaptation, instance

segmentation, peripheral blood smear

1. Introduction

The peripheral blood smear is a procedure that is used to investigate and
count blood samples (Linden et al., [2012) under a microscope. Getting the
count of different white blood cells (WBCs) may help doctors to diagnose certain
diseases El Hematologists regularly receive blood samples (Chadaga et al., 2022;
Kukar et al.||2021)) to test for diseases. Because of the lack of present research and
tools, hematologists manually count (Adewoyin & Nwogoh, [2014)) and identify
blood cells. This leads to a slow process of generating blood test results. A
typical slide of peripheral blood smear collected from our dataset is shown
in Figure Two types of slides are present in the proposed dataset. First,
annotated instances of smear slides are used for training, as shown in Figure
[fa] Second, instances of mixed cells used for testing that are not annotated, as
shown in Figure

This field lacks automation because of the unavailability of a multi-class
peripheral blood smear dataset, which can suit all demography. Data is annotated
and collected by expert medical practitioners (Bringay et al., [2006). The data
also varies according to demography (Endeshaw et al., 2008} [Pal, 2022|) and the

process of creation of blood slides to be investigated under a microscope. In this

Thttps://www.ucsfhealth.org/medical-tests/wbc—count

https://www.ucsfhealth.org/medical-tests/wbc-count

(a) An instance of Lymphocyte cell from the (b) Several instances of cells from the unanno-

training dataset. tated test dataset.

Figure 1: Samples of typical smear slides containing different White Blood Cells (WBCs) and
Red Blood Cells (RBCs) were collected from our novel RV-PBS dataset. We are interested in
understanding the type of WBC present on a single slide (as shown in purple). RBCs, usually
of biconcave-disc shaped and present in enormous amounts, are irrelevant in
predicting the class of WBCs through slides.

study, we introduce a novel 10-class segmentation peripheral blood smear dataset
comprising about 727 images, the Ramakrishna Vivekananda peripheral blood
smear (RV-PBS) dataset. A sample of this dataset is shown in Figure [d] This

dataset is created using Leishman staining as stated in |3} Related studies which

deal with classifying (Acevedo et al.,2019) and detecting (Kouzehkanan et al.l
2022) peripheral blood smears often deal with single-cell per slide. According

to the authors’ knowledge and at the time of writing, this is the first dataset
with many cells per slide for ten different categories. ALL-IDB1 and ALL-IDB2

(Labati et all [2011) datasets also have many cells per slide but have as little as

108 images which were collected at different magnification ranges, specifically
for research in detecting Leukemia. The proposed data simulate actual settings,
which can help the doctors get an approximate overview of the different cells in

the smear slide. Other studies use a comparatively greater amount of data, i.e.,

about 40K image samples (Kouzehkanan et al.,|2022), which have a single cell per

slide with only bounding-box annotations. For this study, our dataset has fewer

images, i.e., 727 smear slides from the RV-PBS dataset, containing a different

PBC Cell Extraction
algorithm

Figure 2: Schematic diagram of the process for extracting cells for domain adaptation pipeline.
We use these extracted cells images to pass to the domain adaptation pipeline from both
datasets. This will help the model focus on only relevant WBC images rather than unnecessary
RBC images. The cells are extracted from the PBC dataset to create C-PBC dataset for
domain adaptation using the algorithm discussed in Section [3.4] is shown at the top. We use
Mask R-CNN to extract cell images from the RV-PBS dataset to create CRV-PBS dataset.
The cell images of the CRV-PBS dataset are passed to the domain adaptation pipeline for

improving classification is shown at the bottom.

number of WBCs per slide. The lower number of images and imbalanced classes
gives us the opportunity to employ different strategies that help the model attain
acceptable performance for benchmarking and deployment.

The process of detection is as follows. Initially, Mask R-CNN
is used to segment and detect the images from the RV-PBS dataset. We
record the detected classes, i.e., 1 of 10 classes. After segmenting, we extract
the cell images for the initial classification pipeline of the 10 classes. Once the
initial classification is done, and if we find the classified class to be one of the 8
common classes (with PBC data as discussed later), we send the extracted cell

image to the domain adaptation pipeline. The domain adaptation (Ganin &

Lempitskyl [2015]) pipeline then gives a more refined classification, which helps

to increase the detection capability of the Mask R-CNN pipeline. Since Deep

Learning models need a tremendous amount of data, we use a relatively larger

but similar dataset to perform domain adaptation (Ganin & Lempitsky], 2015)

Ot Laben s

B ® * Seiby 0 omcen

v POTyRG

QQOVAT sropes s O oo O e & Bz v
MK I P U L0
L]
-+
2
o
.
[m]
9]
“
@
(=]
L+]
=
=
o

Figure 3: A sample of Basophil cell being annotated using CVAT (Computer Vision Annotation
Tool) software to create the RV-PBS dataset.

and improve the current results.

In this paper, we use a similar dataset named PBC normal DIB dataset

(Acevedo et al. [2020] [2019)), commonly known as the PBC dataset comprising

17092 images. This dataset shares 8 common classes with the RV-PBS dataset.
This is the reason for choosing only this dataset for the domain adaptation
pipeline since it shares the maximum common classes with our proposed dataset
which is available openly. There are no known existing datasets, according to the

knowledge of the authors and at the time of writing this paper, which has the

maximum number of common classes. We use transfer learning (Zoph et al.l 2018;

Pal & Paull [2021)), data augmentations, and various preprocessing techniques

which help to improve a model’s performance. This study mainly focuses on
creating a pipeline for automating the count of WBCs with relatively less and
imbalanced data and using domain adaptation which has not been explored
much in this field of medical image segmentation. In summary, the principal

contributions of this work are -

e We have created a high-resolution novel 10-class peripheral blood smear

dataset, the RV-PBS dataset. The dataset can be used, for instance-

segmentation benchmarks. To the authors’ knowledge, there is no such
instance segmentation dataset that is available for research that has 10-class

White Blood Cells (WBCs) and multiple different cells per slide.

e Employing Mask R-CNN for cell image extraction from high-resolution
RV-PBS dataset for passing it into the domain adaptation (Guan & Liul,
2022)) pipeline. Extensively comparing the SOTA CNN models to get better
feature representation than previously reported (Acevedo et al., [2019)) on
the PBC Cropped dataset. Unifying PBC Cropped and CRV-PBS dataset

by using a custom-made non-deep-learning segmentation algorithm.

e Performing domain adaptation using the best selected common transfer
learning network backbone on the cropped images of both the dataset,
i.e., CRV-PBS and C-PBC datasets, and improving the existing metrics,
i.e., precision, recall, and F1-score of classification on the newly created

dataset, making it suitable for benchmarking and deployment.

The overall pipeline is discussed in more detail in Figure 23] of section
of this paper. We structured this paper, beginning with an overview of the
related works, followed by a description of the newly constructed dataset and its
properties. We extensively investigated a similar classification dataset that helped
us to get insights into making a more robust classification pipeline via transfer
learning. The procedure for extracting the cell images to create a preprocessed
dataset has also been discussed briefly. Next, we analyzed the application of Mask
R-CNN in extracting cell images from the RV-PBS dataset, followed by domain
adaptation to improve existing classification accuracy. Finally, we conclude
with future scope and ideas for further progress to convert this research into

production software that could cater to hematologists of different demography.

2. Related work

In the current literature, a wide variety of models can perform medical image

segmentation |[Pal & Mj| (2023)) holistically. One such architecture is U-Net

(Ronneberger et al., [2015]), which yields SOTA segmentation results in some

datasets and is widely used for benchmarking. This architecture comprises a
contracting path to capture context and a symmetric expanding path that enables
localization. Researchers have proposed several variants of U-Net
let al., 2015} [Thomas et al., [2021} [Zhou et al.| [2018; Tbtehaz & Rahmanl [2020) in
the current literature that delivers improved performance. The UNet++
architecture has nested and dense skip connections, potentially

making it more capable of capturing fine-grained details by gradually enriching
the high-resolution feature maps from the encoder network and then fusing
them with the feature maps from the decoder network. Researchers have also

implemented an attention gate in a standard U-Net architecture (Schlemper

let al.} |2019; Thomas et al., |2021)) that allows the attention coefficient to be more

specific to local regions. Recent studies, exemplified by the Vision Transformer

(ViT) Dosovitskiy et al. (2021), demonstrate that a reliance on convolution is not

essential. Utilizing a pure transformer-basedVaswani et al.| (2017) architecture,

originally designed for natural language processing tasks when applied directly
to a sequence of image patches, proves highly effective for image classification.

Some research works have already attempted to address the problem of WBC
differential based on images using Machine Learning (ML) methods
2019; Deshpande et al.| [2022] 2021). For example, they used object detection

techniques, namely Single Shot Multi-box Detector (SSD) (Liu et al., 2016) and
You Only Look Once (YOLOv3) (Redmon et al., [2016)), for 11 types of peripheral

leukocyte recognition. A few of the other well-known deep learning-based object

detection architectures include Faster R-CNN (Ren et al., 2015), Mask R-CNN
(He et al., [2017), Region-based Fully Convolutional Networks (R-FCN) (Dai et al.|

2016)) which have been used widely for detection purposes in computer vision.

Researchers have proposed models to solve classification using unsupervised

domain adaptation (Pandey et al., [2020) when cell images are captured from

different lighting and camera conditions. Some scholars have also worked on

self-supervised learning techniques (Zheng et al., 2018) to extract WBCs from

slides via standard k-means and Support Vector Machine (SVM) methods, which

lack precision segmentation masks. A popular dataset containing about 40K
cell slide images, known as Raabin dataset (Kouzehkanan et al.| [2022), has only
bounding boxes of about 5 classes of WBCs in them. The dataset also has
segmentation masks of about 1145 cells for the nucleus and cytoplasm, which can
be used for the early detection of haematologic diseases. Researchers have used
a novel 1K dataset having only point annotation of cells for detection. This is
done by a U-Net-like architecture called as DCNet (Lee et al., 2021)) (Differential
Count Network), which detects the cells. However, these methods lack accurate
instance segmentation and detection of cells. The works in the current literature
only detect a limited number of cell types for minimal purposes. Our work
can be used in the medical sector for automating the blood testing procedure
and diagnosing diseases by counting the major types of white blood cells. Our
dataset has 10 classes, proper segmentation masks, and class annotations for all
the cells in the slides. We have used Mask R-CNN (He et al.| [2017) in one of
our pipelines for extracting the cells from the RV-PBS dataset.

There have been studies in Unsupervised domain adaptation by backpropa-
gation (Ganin & Lempitsky, [2015)), which utilizes labeled data to learn features
from some unlabelled data of similar domains to get domain invariant features.
We use this method for our domain adaptation pipeline. Recent studies leverage
the power of adversarial networks, which outperform models on standard datasets
using data from different domains. Domain adaptation can also be applied in
image segmentation (Murez et al., 2018)) problems, but one dataset needs to
have a large number of proper segmentation masks. Researchers have performed
detection (Hsu et all 2019) by training models via domain adaptation. A few
works in medical sectors (Guan & Liul [2022) use domain adaptation. Domain
adaptation using generative (Al-qudah & Suen| [2020) latent search can help
to classify cell types. Scientists have also studied different techniques using
standard deep learning (Pandey et al.,|2020) architectures, which help to detect
cell types. But all these methods use a large amount of data, and their data
has very little class imbalance, a very less variation in the number of different

classes of the cells. This study explicitly handles the class imbalance and data

sufficiency problem via domain adaptation.

WBC class name RV-PBS distribution CRV-PBS distribution

Band Cell 60 63
Basophil 26 28
Blast Cell 68 153
Fosinophils 67 93
Lymphocytes 60 62
Myelocytes 83 95
Metamyelocytes 31 32
Monocytes 53 54
Neutrophil 99 116
Promyelocytes 36 56
Mixed for testing 144 NA

Table 1: Distribution of individual classes of WBCs from RV-PBS dataset with 727 slide
images. All the classes except the mixed are annotated using CVAT. The corresponding total

cell count from each class is the distribution of the CRV-PBS dataset.

3. Datasets

3.1. RV-PBS dataset

For this study, we have created a novel WBC dataset comprising 10 classes
known as the Ramakrishna Vivekananda peripheral blood smear (RV-PBS)
dataset. Air-dried peripheral blood smears are stained by Leishman stain
following standard protocol and examined under an oil immersion lens using
10X eyepiece magnification (final magnification-1000X) — photographs taken
by iPhone XR 12-megapixel camera with f/1.8 aperture. The dataset comprises
high-resolution (4032 x 3024) images of blood smear slides. The cell images of
the RV-PBS dataset were annotated using Computer Vision Annotation Tool
(CVAT) (Sekachev et all [2020) as shown in Figure [3| We show a few samples of
the same in Figure[l} From Figure we find that there are several artifacts (of

the same purple color as the WBCs) present on the slide. While creating instance
segmentation masks, we have not included these artifacts. These artifacts are

chemicals released by individual WBCs.

(a) (b) (e) (d) (e) (0 () (h) ® ©)

Figure 4: Images of individual samples from the CRV-PBS dataset. There are 10 classes, From
top left: (a) Band Cell, (b) Basophil, (c¢) Blast Cell, (d) Eosinophils, (¢) Lymphocytes, (f)
Myelocytes, (g) Metamyelocytes, (h) Monocytes, (i) Neutrophil, and (j) Promyelocytes. These

samples will be used to do domain adaptation.

Table [[shows the distribution of individual classes for this dataset under
the column titled RV-PBS distribution. From the table, we can see that the
Basophil class has 26 slides and 28 instances, whereas Neutrophil has 99 slides
and 116 instances. All the slides in the training dataset have the same class of
cells per slide. The mixed slides have different classes of cell types per slide. We
used mixed classes for testing only. All the instances of cells from this dataset
except the mixed class are annotated. This is a developing dataset and we are

planning to add more annotated samples to this dataset in the future.

3.2. CRV-PBS dataset

In the interest of domain adaptation, we extracted individual cells from
the proposed RV-PBS dataset to create this classification dataset, the cropped
RV-PBS (CRV-PBS) dataset. Figure [4] shows the samples of individual classes
of the dataset. The distribution of this dataset is present in Table [T] under the
column titled CRV-PBS distribution. Note that the distribution of slides varies
from the individual cell count. This is because there might be many cells present
on one slide. Since the test mixed class is not annotated, hence individual
cropped cells for each class are not available (NA) as shown in Table |1} This
dataset has a total of 762 cell images. The highest count is blast cell with 153

images, and the lowest count is the class of basophil with 28 images.

10

>@0 0@
o) 'on &
(a) (b)

@, @

(h) ®) (k) @ (m)

Figure 5: Images of samples taken from the PBC dataset. From top left to bottom right:
(a) Basophil (BA), (b) Eosinophil (EO), (¢) Lymphocyte (LY), (d) Monocyte (MO),
(e) Immature Granulocytes (IG), (f) Myelocyte (MY), (g) Metamyelocyte (MMY), (h)
Promyelocytes (PMY), (i) Neutrophil (NEUTROPHIL), (j) Band Neutrophils (BNE), (k)
Segmented Neutrophils (SNE), (1) Erythroblast (ERB), (m) Platelet (PLATELET).

3.3. PBC dataset

This dataset (Acevedo et al], [2020) is retrieved from Mendeley [|. There are

17092 images of normal cells which are gained using analyzer CellaVision DM96
camera from the Core Laboratory at the Hospital Clinic of Barcelona. These
images are of 360x363 pixel resolution and are present in JPG format. Each of
the individual slides contains only one cell as shown in Figure

This dataset contains 8 classes. Some classes have subclasses, as shown in
Table [2| From Table [2, we can see that the Immature Granulocyte class has 4
subclasses whereas Neutrophil has 3 subclasses. This labeled dataset is used

to benchmark machine learning algorithms that are used for classification. To

the authors of the dataset’s knowledge (Acevedo et al.l [2019)), this is a first-of-

its-kind canonical dataset for model benchmarking. We have used a standard
convolutional backbone and reported better results than the results previously

reported by the original authors.

“https://data.mendeley.com/datasets/snkd93bnjr/1

11

https://data.mendeley.com/datasets/snkd93bnjr/1

O
0
S
(b)

(a)

(g)

-l s

(h) ®) ()

Figure 6: Images of samples taken from the C-PBC dataset. From top left to bottom right:
(a) Basophil (BA), (b) Eosinophil (EO), (¢) Lymphocyte (LY), (d) Monocyte (MO),
(e) Immature Granulocytes (IG), (f) Myelocyte (MY), (g) Metamyelocyte (MMY), (h)
Promyelocytes (PMY), (i) Neutrophil (NEUTROPHIL), (j) Band Neutrophils (BNE), (k)
Segmented Neutrophils (SNE), (1) Erythroblast (ERB), (m) Platelet (PLATELET). The

®

(m)

classes in bold show the superclass, which may have individual subclasses of cell types.

Class name Subclass name

Total image count

Basophil (BA)
Eosinophil (EO)
Lymphocyte (LY)
Monocyte (MO)

Immature Granulocytes (IG)
Immature Granulocytes (IG)
Myelocyte (MY)
Metamyelocyte (MMY)
Promyelocytes (PMY)

Neutrophil (NEUTROPHIL)
Neutrophil (NEUTROPHIL)
Band Neutrophils (BNE)
Segmented Neutrophils (SNE)

Erythroblast (ERB)
Platelet (PLATELET)

1218
3117
1214
1420

2895
151
1137
1015
592

3329
50
1633
1646

1551
2348

Table 2: Distribution of individual classes of PBC and C-PBC dataset with 17092 images.

12

(2) (b) (c) (d) (e) () ()

Figure 7: The process of automating the cropping of the PBC dataset. From top left to
bottom: (a) A sample image from the PBC dataset, (b) the image is converted from BGR to
HSV, (c) mask obtained after applying the lower and upper threshold of blue color, (d) the
dilated mask to make it more prominent, (e) bitwise AND operation with the mask and the
original image, (f) Contours obtained by applying the watershed algorithm on the mask, (g)

The cropped out segmented image.

3.4. C-PBC dataset

We are cropping out only the relevant cell samples from the RV-PBS dataset
to identify WBC samples to create the cropped PBC (C-PBC) dataset. This
will help the domain adaptation pipeline to concentrate on only the essential
information from an image, i.e., the WBCs, and not the textured background or
RBCs. We do this by taking the common image classes from both datasets to
train the domain adaptation pipeline. This motivated us to create a cropped
version of the PBC dataset, the C-PBC dataset. Since each slide has only one
image present, this dataset has the same distribution of classes as the previous
dataset. Samples from this dataset are shown in Figure [6] We use a simple
algorithm to extract images from the PBC dataset.

The algorithm selects a standard image from the PBC dataset as shown in
Figure It then converts this image from BGR (Blue Green Red) to HSV
(Hue Saturation Value) E| color scale, as shown in Figure We handpicked
an average threshold of lower and upper color values that will mask out the
cell in an unsupervised manner. The lower blue has an HSV value of (100, 20,
20), and the upper blue has (300, 245, 245). We mask the HSV image with this
threshold, and the result of this process is shown in Figure Since there might

be slight noise, we smoothen the mask by using a box kernel of size 3x3 for three

Shttps://en.wikipedia.org/wiki/HSL_and_HSV

13

https://en.wikipedia.org/wiki/HSL_and_HSV

iterations, as shown in Figure After obtaining the mask, we perform bitwise
AND operation with the mask to remove irrelevant background and RBCs as
much as possible, as shown in Figure To extract the individual contours
of cells, we compute the exact Euclidean distance from every binary pixel to
the nearest zero pixels. We select peaks in this distance mask with a minimum
distance of 20. A connected component analysis on the local peaks is used to
select markers El We apply the watershed algorithm (Beucher] [1994)) using the
peaks, markers, and masks and draw circles as shown in Figure This is done
since we don’t have any proper mask for extracting the cells from this dataset.
The extraction of cells is done in an unsupervised manner using classical and
traditional techniques since this is a classification dataset, and we need to make
this similar to the other dataset that will be used in the domain adaptation
module. We noted a pattern in the PBC dataset that allows us to crop the
most prominent circle from the center of the image to extract individual cells.
The final image is shown in Figure We repeat this for every other image
of the PBC dataset to get the C-PBC dataset. In this extraction process, we

considered two assumptions:

e The cells are present in the exact center of the PBC slide.

e The size of the biggest circle detected by the algorithm is the size of the
diameter of the cell. We use this information to crop out relevant squares

from the PBC dataset.

It took 0.1448 seconds to process an image on average using the algorithm.
Efforts were made to remove some artifacts, such as RBCs, but some images,

such as the cell shown in Figure [6b] have traces of artifacts.

“https://pyimagesearch.com/2015/11/02/watershed-opencv/

14

https://pyimagesearch.com/2015/11/02/watershed-opencv/

=>| Backbone Model |=> = 8 classes
(Softmax)

Global

Average

Pool

Dense (Fully Connected) layers

Figure 8: The deep learning architecture is used in building the classification models to
compare popular architecture’s convolutional neural network backbones. We use a global
average pooling layer after extracting features from the CNN layer. The last layer has Softmax
as activation, containing the different number of classes as the number of output neurons. In

this model, we have 8 classes as activation outputs.

4. Methodology

4.1. Transfer learning

We apply transfer learning to all the classification datasets that were used in
this study, i.e., PBC, C-PBC, and CRV-PBS datasets. We have used a simple
architecture to compare different popular architectures, as shown in Figure
The architecture uses the transfer learning convolutional neural network
backbone, which is replaced with different popular architectures. We needed to
do an evaluative study since some architecture backbone might be good for a
particular dataset (Pal & Paul, [2021)) but not good for another. This is only found
out when we actually apply the model and do an extensive benchmarking test
on the datasets (Pal & Paul| [2021)). The transfer learning backbone architecture
is followed by a global average pooling layer and a set of fully connected layers.
Input images to the model are of size 360x360x3, i.e., 3-channel RGB images.

The input image is passed through a series of convolutional layers; for example,

15

No. of parameters (in Million)
VGG 16

Xception

ViT

InceptionV3
Resnet101
InceptionResNetV2

NASNetLarge

o

15 30 45 60 75 90

Figure 9: The number of parameters in million for different models. VGG16 with 14.78 M,
Xception with 21.12 M, InceptionV3 with 22.06 M, Resnet101 with 42.92 M, InceptionResNetV2
with 54.53 M, and NASNetLarge with 85.43 M parameters.

in the case of the VGG16 model, when using Keras API, just before the Global
Average Pooling, we get a feature volume of size 11x11x512. The Global average
pooling layer in Keras takes the most prominent feature from each of these
512 channels creating a 512 pooled feature vector. This feature vector is fully
connected with a layer containing 128 neurons. The output Softmax layer was
tuned according to the number of classes present in the dataset. We use a set of
three metrics, i.e., precision, recall, and F-1 score, to measure the performance of
different models in different datasets. These metrics are discussed in Appendix
[l The parameters of the models are also shown in Figure [0] Batch size of 8,
learning rate of le-04, and other hyperparameters were kept constant in this

study, to ensure proper evaluation of different models.

We incorporated the Vision Transformer (ViT) [Dosovitskiy et al. (2021)

architecture, distinguished by its departure from traditional convolutional lay-
ers. Despite this divergence, it seamlessly integrates into our training frame-
work for comparative studies. ViT underwent training akin to conventional
convolutional architectures, with the penultimate layer featuring an equiva-
lent number of fully connected/dense layers. During training, we initially

froze the entire architecture except the penultimate layer, followed by full

Figure 10: An illustration showing the patterns that the selected layers of the VGG16 model

learn. Figure and is block2_conv2, one of the initial layers and Figures and
is block5_conv3, one of the final layers. Figures and show the freezed version of the
weights, i.e., the model trained on only the ImageNet dataset capturing the natural imagery’s
features, and the Figures [T0d and [I0d] show the fully trained version of the weights, i.e., the
features that are changed to identify only cell images, hence restricting to a restricted and

specialized problem.

training in a subsequent phase. To integrate ViT, we adapted the openly
available implementation from Keras (https://keras.io/examples/vision/
image_classification_with_vision_transformer/), making specific modifi-
cations. A patch size of 6, as prescribed by the Keras implementation, and
a projection dimension of 64 were utilized as hyperparameters for tuning the
transformer architecture. To maintain consistency, we retained the same batch
size and other hyperparameters for reusability.

The transformer architecture demonstrates precision rates of approximately
95.75% on the C-PBC test dataset and 92.67% on the PBC test dataset as shown
in Table [3] While slightly lower than state-of-the-art architectures, achieving
99.02% precision on the PBC datasets, this variance is attributed to resource
constraints for fine-tuning transformers. Transformer architectures demand
substantial computing resources, and our results reflect the best performance
achievable under these limitations. Transformers are also sensitive to learning
rates, and after an extensive grid search, the reported precision corresponds to
the optimal learning rate identified. However, the transformer’s performance was
suboptimal for the CRV-PBS and PBC datasets. Consequently, we employed the

Xception model for Domain Adaptation, which outperformed across all metrics

17

https://keras.io/examples/vision/image_classification_with_vision_transformer/
https://keras.io/examples/vision/image_classification_with_vision_transformer/

and datasets.

Model Name Dataset | Type Precision | Recall | Fl-score

C-PBC fully trained 96.01 95.74 95.70

C-PBC freezed 91.15 91.15 90.97
Inception V3 (Szegedy et al.||2016
PBC 98.73 98.88 98.89

fully trained

PBC freezed 91.61 91.42 91.28
C-PBC fully trained 98.84 98.99 98.82
Inception- C-PBC freezed 93.73 93.90 93.66
ResNetV2 PBC fully trained 99.02 99.07 98.93
PBC freezed 93.60 93.41 93.45
C-PBC fully trained 96.63 96.51 96.64

C-PBC freezed 92.51 92.38 92.39
NASNetLarge (Zoph et al.||2018
PBC 98.84 98.92 98.75

fully trained
PBC freezed 93.63 93.67 93.78
C-PBC fully trained 98.49 98.29 98.22

C-PBC freezed 95.03 94.85 95.05
VGG16 (Liu & Deng
PBC 98.73 98.78 98.69

fully trained

PBC freezed 93.60 93.23 93.27
C-PBC fully trained 98.96 98.81 98.75

C-PBC freezed 93.59 93.46 93.29
Xception (Chollet| 2017
PBC 98.84 98.81 98.75

fully trained

PBC freezed 91.51 91.19 91.27
C-PBC fully trained 98.37 98.56 98.40
C-PBC freezed 71.05 68.95 68.47
PBC fully trained 98.84 98.92 98.75

PBC freezed 68.87 70.22 68.03
C-PBC fully trained 95.7¢

T

94.31 93.16
C-PBC freezed 87.45 86.17 85.39
ViT (Dosovitskiy et al.||[2021)
PBC fully trained 92.67 92.76 92.51
PBC freezed 83.21 82.17 82.10

3]

Table 3: Application of various state-of-the-art models on PBC and C-PBC dataset with
Adam Optimizer, a batch size of 16, and a learning rate of le-4 on the test set. Here, only
NASNetLarge has a batch size of 8 because of limited computational resources. The results

are shown in %-age.

18

Model Name | Precision (%) | Recall (%) | Fl-score (%)
Inception V3 77.41 75.57 74.44
Inception- 81.07 76.91 74.93
ResNetV2

NASNetLarge 61.79 54.37 51.29
VGG16 73.54 72.72 72.62
Xception 82.15 78.80 76.96
Resnet101 72.94 76.84 74.39
ViT 56.76 55.28 54.32

Table 4: Application of various state-of-the-art models on CRV-PBS dataset with Adam
Optimizer and batch size of 16 and learning rate of le-4 on the test set. Here, only NASNetLarge

has a batch size of 8 because of computational limitations.

22%
i

ag% 17% 0% 0% 8%
20 dn2 30 1

103% Tax 3%
3 Eid T

(a) PBC dataset using InceptionResNetV2 (b) CRV-PBS using Xception model.

model.

Figure 11: Plots for the confusion matrix got from (a) The PBC dataset with 8 classes and (b)
The CRV-PBS dataset. The corresponding labels for the PBC dataset are - 0 (Eosinophil), 1
(Neutrophil), 2 (Monocyte), 3 (IG - Inactive Granulocytes), 4 (Basophil), 5 (Erythroblast), 6
(Platelet), 7 (Lymphocyte).

19

4.1.1. Ezxperiments

According to the original paper on the PBC dataset (Acevedo et al., [2019),
the researchers used about 80% of the whole dataset in training and the rest 20%
in testing. Among the 80% of the training set, 20% were used as a validation set.
So, they used a 64-16-20 split of the whole dataset as a training-validation-test set.
We have kept this ratio the same for a fair evaluation of standard architectures
and found some other backbone to surpass their VGG-16 and Inception-V3
baselines (Acevedo et al.| [2019). We have also used a seed of 42 using Python-
3’s Numpy’s random function to reproduce the dataset split in every scenario
reasonably. To keep things simple, we did not use data augmentation like the
original authors of the dataset. Adam Optimizer (Kingma & Bal 2015)) with a
learning rate of 1le-04 and a batch size of 8 was used for training the datasets.
We perform a similar set of experiments on the CRV-PBS dataset, but here with
only fine-tuned training. We train the entire network to find the best model
to classify the 151 test images. The dataset has 762 images, and we split the
dataset in train-validation-test similarly, i.e., 64-16-20.

The evaluation results on the test set for PBC and C-PBC datasets are shown
in Table [3] We have not used the Accuracy metric in our benchmarking results
since it might mislead with high scores (Johnson & Khoshgoftaarl 2019) and
incorrectly show excellent performance. This is because our dataset is highly
imbalanced, and hence the accuracy metrics will not give meaningful results. The
training datasets, i.e., CRV-PBS and C-PBC datasets, have been augmented to
the same number to alleviate the class imbalance problem. We use a combination
of different training procedures for comparing the metrics. The Freezed version
of the training uses the pre-trained backbone model as it is and only updates
the weights and biases of the fully connected layer. A fully trained mechanism
trains the complete model, i.e., the pre-trained backbone and the fully connected
layer. This comparison is necessary since we wanted to show that even the
features captured by the weights of the ImageNet (Deng et al.l |2009) dataset can

successfully classify cell images by tweaking the fully connected layer’s weight

20

and biases.

To get an intuition of what the model learns, we have shown the weights
E| that the model learns to respond to in the initial and final layers of the
model as shown in Figure The block2_conv2 (shallow layer of VGG16
model) and block5_conv3 (deeper layer of VGG16 model) are the pre-trained
default layer names available from the standard Keras API, (available at https:
//keras.io/api/applications/vgg/)). In Keras, a model.summary() after
invoking the model will give the layer names accordingly. We have used the
following methodology for visualizing the features learned by the model. A
specific loss function, as proposed in (Simonyan et all [2014), is used, which
maximizes the value of a given filter in a convolutional layer. We use Stochastic
Gradient Descent(SGD) optimizer to adjust the values of the input image (which
is a 360x360x3 size gaussian noise) so as to maximize the activation values.
This process is continued for 80 iterations which continuously maximizes the
response to the input image by adding the gradient to represent those features
that a filter learns to respond to. This analysis is necessary for us to check
what kind of patterns the deep learning model learns to respond to and the
change in the response when we go from pre-trained model to fine-tuned model.
The initial layers of the freezed training capture patterns of natural imagery as
shown in Figure and The final layers capture more abstract (Zeiler
& Fergus| [2014]) features. Similarly, the initial and final layers capture more
problem-specific features, as shown in Figure and pertaining to cell

images.

4.1.2. Results

Table |3| shows that InceptionResNetV2 (Szegedy et all 2016) performs the
best in terms of all the metrics in classifying the PBC dataset. The model
achieves a precision of 99.02%, recall of 99.07%, and an Fl-score of 98.93%

on the test dataset comprising 2609 images. The training and validation graph

Shttps://keras.io/examples/vision/visualizing_what_convnets_learn/

21

https://keras.io/api/applications/vgg/
https://keras.io/api/applications/vgg/
https://keras.io/examples/vision/visualizing_what_convnets_learn/

recorded for the model is shown in Figure There are kinks in the plot of
validation precision, which might happen when there are outliers in the data,
which does not help in optimizing using mini-batch gradient descent El Confusion
matrix obtained on the test dataset is shown in Figure The major mistake
the model makes is by predicting lymphocytes as erythroblasts. This is clear
when we see Figure 5} since even normal humans might make the same mistake
as the cells look similar.

From Table 3] we find the C-PBC dataset doing relatively badly in classifying
cells in terms of precision, recall, and Fl-score. This might be because of the
neighboring information that is present in the cell, which is unnoticed by the
normal human eye. Here, the Xception model performs the best
with a precision of 98.96%, recall of 98.81% and an F1l-score of 98.75%. We

note this information for further study.

Training Precision for PBC Full dataset Validation Precision for PBC Full dataset

LOD mmrare L0 ey
':‘ V\ L
!

— NASNetLarge ' — NASNetLarge

c c
8 2
2 0.90 —— InceptionResNetV2 206 —= InceptionResNetV2
o Inception-v3 & Inception-v3
2 (.85 —— Resnet101 0.4 Resnet101
—— Xception Xception
0.80 ++=+ VGG 16) ceer VGG 16
ViT 0.2 ViT
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs
(a) Training (b) Validation

Figure 12: Training and Validation graph for PBC full dataset. The models were trained for
100 epochs using the fine-tuned procedure, as discussed in Table ﬁ

The results of the experiments conducted on CRV-PBS datasets are shown
in Table [and we find Xception model performs better than others. We assume
more data can capture more features, which will make the metrics even higher.
The Xception model has a precision of 82.15%, a recall of 78.80%, and an
Fl-score of 76.96%. The confusion matrix of the Xception model on the test

Shttps://stats.stackexchange.com/questions/303857 /explanation-of-spikes-in-training-loss-

vs-iterations-with-adam-optimizer

22

Training Precision for CRV-PBC dataset Validation Precision for CRV-PBC dataset

1.0 r m— 0.8

— NASNetlarge

.E 0.6 - — NASNetLarge ,5 5
2 = —= InceptionResNetV2 204 il —= InceptionResNetV2
204 ¢ Inception-v3 g Inception-v3
o 3 —— Resnet101 o 0.2 Resnet101
0.2 : —— Xception - Xception
) : =+ VGG 16 =+ VGG 16
0.0k viT 0.0 viT
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs
(a) Training (b) Validation

Figure 13: Training and Validation graph for CRV-PBS dataset. The models were trained for
100 epochs using the fine-tuned procedure, as discussed in Table

set is shown in Figure Training and validation loss using the fine-tuned
procedure is shown in Figure [I3] While the training graph for precision is
smooth, the validation graph is turbulent. This is because of the unavailability
of a huge amount of data and the class imbalance problem. We address this issue
by performing unsupervised domain adaptation on the common classes of the
C-PBC and CRV-PBS datasets to improve performance in classifying the data.
We find an interesting observation about the Xception model, which performs
better in classifying cropped images. We use this model as the backbone of the

domain adaptation pipeline.

4.2. Mask R-CNN pipeline

For classifying images, we need to extract the cell images from the RV-PBS
dataset. Mask R-CNN can extract the cell images efficiently.
Mask R-CNN outputs bounding boxes, classes present, and precise segmentation
masks of different objects present in an input image. It uses a convolutional
backbone, i.e., Feature Pyramid Network (FPN) for preserving features at
different scales. Mask R-CNN is based upon Faster R-CNN
network which uses Region Proposal Networks (RPN). RPN uses bounding
boxes also known as anchors to detect objects faster without searching the

entire image. The major contribution of Mask R-CNN is it uses Region of

Interest (ROI) Align (He et all 2017)) to align features at different scales using

23

Box Loss Class Loss

RPN Bbox Loss : —— RPN Class Loss
== Validation RPN Bbox Loss ==« Validation RPN Class Loss
0.6 == Mask R-CNN Bbox Loss. —— Mask R-CNN Class Loss
Validation Mask R-CNN Bbox Loss 0.4 Validation Mask R-CNN Class Loss
80
- -
0.2
0.2
Yo "\;
0.0 1flu,-”.r,nt*'\.e\«—/r\.‘__“._- . . 00 L 3
0 80 160 240 320 100 0 80 160 240 320 100
Epochs Epochs
(a) Box Loss (Lpog) (b) Class Loss (Lc¢is)
08 Mask Loss Total Loss
- === Mask R-CNN Mask Loss 1.6 == Mask R-CNN Loss
Validation Mask R-CNN Mask Loss) Validation Mask R-CNN Loss
0.6
12
2 l 2
0 0.4 o
S ’ Sos
0.2 \\ 0.4
Aical \\.* B
0.0 0.0
0 80 160 240 320 400 0 80 160 240 320 400
Epochs Epochs
(c) Mask Loss (Lmask) (d) Total Loss (Liotal)

Figure 14: Training and Validation Losses of Mask R-CNN. The first 200 epochs are for
training the network heads and the rest 200 epochs are for training the entire network of Mask

R-CNN.

the bilinear interpolation method. This helps to remove location misalignment
caused because of ROI pooling, hence, significantly increasing performance in

getting segmentation masks.

4.2.1. Ezxperiments

We have used Matterport’s implementation of Mask R-CNN (available at:
https://github.com/matterport/Mask_RCNN). The architecture uses ResNet
101 backbone for getting the features, which is trained on the MS COCO
(Microsoft Common Objects in Context) (Lin et al.| dataset. The RV-PBS
dataset containing 727 images was divided into 80-10-10, i.e., 80 training, 10
validation, and 10 test to perform training.

Training of Mask R-CNN pipeline was done using Quadro GV100 GPU with
32 GB VRAM. Here we discuss the initial configuration of the training pipeline
which was provided by the package. The physical memory of the computer was
64 GB, hence, 3 images of the RV-PBS dataset of resolution 4032x3024 were
passed to the GPU per step. The dataset has 10 classes and 1 background, hence

24

https://github.com/matterport/Mask_RCNN

(a) Original image of Basophil cell from the test (b) Mask R-CNN correctly detecting and seg-

set. menting the image as Basophil cell.
| % W0 e (@
4 \. “ ‘ | .

o

(c) Original image of Band cell from the test set. (d) Mask R-CNN correctly segmenting the cell,
but incorrectly detecting the cell image as Neu-

trophil cell.

Figure 15: The outputs got from the Mask R-CNN pipeline for the test set of RV-PBS dataset,

detecting and segmenting images.

11 classes per pixel were detected. Steps per epoch were set to 500, whereas the
validation step was set to 30. The confidence of detection was set to 0.7, which
means if the Mask R-CNN model was confident above 70% that an instance of
an object is present, only then it will detect it. For the first 200 epochs, only
the Network heads were trained, i.e., the pre-trained convolutional blocks were
not updating the weights, whereas the next 200 epochs fine-tuned the entire
Mask R-CNN network. The pipeline used Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 0.001. The momentum of SGD

was set to 0.9 during training.

25

(a) Unannotated slide containing different cells. (b) Mask R-CNN detecting and segmenting cells

from the image.

(¢) Unannotated slide containing different cells. (d) Mask R-CNN detecting and segmenting cells

from the image.

Figure 16: The outputs got from the Mask R-CNN pipeline for unannotated slides of the
RV-PBS dataset.

The loss of Mask R-CNN (He et al., 2017)) can be formulated as:

Ltotal = Lcls + Lbow + Lmask (1)

The graph of Mask R-CNN during training and validation is shown in Figure
We show the Box Loss (Lp,,) in Figure the Class Loss (L) in Figure
14b] the Mask Loss (Lqsk) in Figure and the Total Loss (Lioter) in Figure
I4d

26

- wr ye—yprum

(a) Annotated version of Slide shown in Figure (b) Annotated version of Slide shown in Figure
%

Figure 17: The annotated version of the unseen mixed slide of the RV-PBS dataset shown in
Figure [16] is annotated for testing the effectiveness of Mask R-CNN for out-of-distribution

images.

4.2.2. Results

Mask R-CNN shows promising results in masking the cells present in the
RV-PBS dataset. We see some images are correctly detected, as shown in Figure
Some are incorrectly detected, as shown in Figure This is because of
the lack of a massive amount of data for training. We assume that training about
5000 images will give excellent results in detecting cells using Mask R-CNN
only. Even though the training was conducted using about 580 images which
contained at max 1-2 instances of cells per slide that too in the center of the
images, Mask R-CNN successfully produced masks for this distribution of slides
which had much more amount of cells different from the training distribution.
From Figure and we can see that the cells were completely masked
except for one cell in Figure The pipeline correctly segregated different
instances of the cells present in the slides of the RV-PBS dataset.

The purpose of Mask R-CNN was to correctly segregate different instances of
cells for classification using a domain adaptation pipeline. Here, it successfully
performs its job but the classification capability was not up to the mark as
shown in Figure [I6a) [I7a] [16d] and [I6d The annotated images for the RV-PBS
dataset is shown in Figure [16c¢| and Figure The results of the Mask R-CNN

27

Input images L y Loss Ly

Features (f)
YEY
class labels

Label predictor

Gy(o 9.\‘)

Domain Classifier

G d(-0 d)
de (0,1}
domain labels
JL
_d Loss L d
20

Figure 18: Unsupervised domain adaptation (IGanin & Lempitsky], |2015]) pipeline suited to

our problem. We use images from two domains, i.e., C-PBC (top left) and CRV-PBS datasets

(bottom left) for training the domain adaptation model.

pipeline show the effectiveness of Mask R-CNN in segmenting different instances
of cell images. If the training was done using more data, the classification would
have been much better on even out-of-distribution images. This motivates us
to develop the domain adaptation pipeline, which uses similar data of different

domains to improve the existing classification accuracy of the classifiers.

4.83. Domain adaptation framework

It is becoming increasingly popular to re-train deep neural networks with
pre-defined weights, such as ImageNet. Transfer Learning often uses pre-trained
weights for the model, which was trained on a similar dataset, to fine-tune the
deep neural network architecture. This way, the knowledge gathered previously
through training will be used on a similar problem. Domain adaptation is a part

of Transfer Learning, as shown in Figure

4.3.1. Ezxperiments
The domain adaptation pipeline is shown in Figure The formulation of

the domain adaptation model is discussed in Appendix [} We use unsupervised

28

Labelled data are available
in target domain

Inductive Transfer

Transfer Learning

Labelled data are available
in source domain

No labelled data in both
source and target domain

Transductive

Unsupervised

Learning Transfer Learning Transfer Learning
A i A
No labelled Labelled data o o=
data i . different single
ata in source in source . .
o 5 domains but domains and
domain domain . 5
single task single task
Self-taught Multi-task / \
learning learning q
Domain bS.ample selec.tlon
Adaptation 1as or co.varlance
shift

Figure 19: Flowchart showing the hierarchies of Transfer Learning (Pan & Yang}|2010). Domain

adaptation is a subpart of Transfer Learning.

domain adaptation (Ganin & Lempitsky, |2015) for our purpose. The overall
pipeline is shown in Figure We initially used Mask R-CNN to extract the
cells from the RV-PBS dataset along with getting the classes. The extracted
cells are then passed to an initial classifier for screening. If the cells belong
to the common classes, the cell image is passed through a domain adaptation
module, which only uses a label classifier for this task. The Domain Classifier
then outputs the final classification class, thus refining the classification of Mask
R-~CNN along with segmenting the classes.

Since medical data prospect under heavy constraints (Willemink et al., 2020),
the data has very little noise and variance. Hence, there is a very mere need for
data augmentations, except for increasing the number of samples. While training
the domain adaptation pipeline, we need to have a number of training samples in
equal quantities from both domains. Hence, we apply a set of data augmentations

to create the training dataset for domain adaptation. We use a probability vector

29

Domain Adaptation Accuracy Domain Adaptation Losses

3.0 — T T ==

1.0
; 0 /w«““,'-'v"""i*‘,’V"‘"’

! 24
C 1
E 09 i g 1.8 —= Source Classifier Loss
5 I 5 === Feature Extractor Loss
8 i 812 —= Domain Classifier Loss
<08 | <
;)
: 0.6 '\
07 I ——- Source Accuracy 0.0 A i
7 .
0 40 80 120 160 200 0 40 80 120 160 200
Epochs Epochs
(a) Accuracy of Source Domain Images. (b) Domain adaptation Losses.

Figure 20: Recorded Accuracy and Loss graph for domain adaptation with Source as RV-PBS
and Target as C-PBC dataset. Losses are of Source Classifier (Categorical Crossentropy),

Related Feature Extractor, and Domain Loss (Binary Crossentropy).

Domain Adaptation Accuracy Domain Adaptation Losses

M/V\w.’..vAJ,V~\,-Nl(M'/-ww»-” — — S I I
d i 28
I
09 f %9
Q ! g2l —= Source Classifier Loss
H I 5 | === Feature Extractor Loss
] ! g4 | == Domain Classifier Loss
208 S |
< : <
I 07 1
] !)
07 | ——- Source Accuracy 0.0 A]
0 40 80 120 160 200 0 40 80 120 160 200
Epochs Epochs
(a) Accuracy of Source Domain Images. (b) Domain adaptation Losses.

Figure 21: Recorded Accuracy and Loss graph for domain adaptation with Source as C-PBC
and Target as CRV-PBS dataset. Losses are of Source Classifier (Categorical Crossentropy),

Related Feature Extractor, and Domain Loss (Binary Crossentropy).

for performing a series of data augmentations. For this purpose, we choose an
11-length vector to decide whether a particular augmentation will happen, i.e.; 1
or not, i.e., 0. This is just a simple design choice which can augment the dataset
in 11 different ways at random. For example, a vector of (1,0,1,1,1,1,1,1,1,1,0)
will decide that only the 2nd and last augmentation will not happen. We select
this vector by giving an equal chance for each of the indices, i.e., while creating
the vector, each cell might have a 0 or 1. There are various types of data
augmentations that were applied to the CRV-PBS dataset. First, since the data
of C-PBC had some background, we can give some random background from

a series of backgrounds. We can set a zoom range between 0.5 to 1 to apply

30

(a) Detected Basophil image by both Mask R- (b) Detected Neutrophil class by Mask R-CNN
CNN and domain adaptation pipeline. pipeline whereas Band Cell in domain adaptation

pipeline. The original class is Band Cell.

(c) Unannotated images from RV-PBS dataset. (d) Unannotated images from RV-PBS dataset.

Figure 22: The outputs got from Mask R-CNN and the domain adaptation pipeline combined.
The detected class in black shows the Mask R-CNN output, whereas the detected class in blue

shows the classification and domain adaptation pipeline’s combined output.

to the image. We can flip the image horizontally, vertically, or both with a
probability % The camera captured a specific domain, and we applied a colour
transformation to look more specific to that. Like for example, a fiery colour
transform will make the slide look more yellowish, while a cool transform will
make the slide look bluish, which was present in the stain. The colour transform

is applied with a probability of ¢.

31

Box
Regressor

. ROI Pooling FC Layers
Input Smear Slide Classes
n H (Softmax)
. é y e Conv Layers Resnet 101 !
[. ! Bounding
: . n

Mask R-CNN
Extracted Cells
Mask R-CNN Output . S
with mask
10 Classes
HH (Softmax) Classifier
Xception backbone
Refined Output Q g
with mask

- !)A modl.lle

with Classifier

Xception backbone

Figure 23: The overall pipeline of our work. We extract individual cells via Mask R-CNN from
the RV-PBS dataset. First, we screen the classes by passing them through a classification
model trained solely on the CRV-PBS dataset. If the detected image is in a common class, we

re-verify the image using the domain adaptation pipeline for refining classification.

We can apply repeated Gaussian Blur to fade the image, which will simulate
the out-of-focus for the cell on the camera. This is not so common in medical
images, but we still wanted the algorithm to be robust to these perturbations.
We changed the contrast and brightness to a certain extent with a certain
probability of making different cell samples. We also rotated an image to a
certain angle with a probability of 1 in the range [0,90], [90,180], [180,270], and
[270,360]. The common classes which were used for this study were: Basophil,

Eosinophils, Lymphocytes, Myelocytes, Metamyelocytes, Monocytes, Neutrophil,

32

and Promyelocytes. These classes were present in both the CRV-PBS and the
C-PBC datasets.

Remarks Precision (%) | Recall (%) | Fl-score (%)
Trained on the 8 common

94.78 94.77 94.79
classes of C-PBC dataset
Above model when used to
classify 8 common classes of 4.47 21.29 7.45
CRV-PBS dataset
Trained on the 8 common

82.64 82.25 81.74

classes of CRV-PBS dataset

Above model when used to
classify common classes of 53.34 24.36 28.29
C-PBC dataset

Model trained on mixed
and classifying the 8 common 95.21 95.45 95.37
classes of C-PBC dataset

Model trained on mixed
and classifying on the 8 common 83.98 83.73 84.34
classes of CRV-PBS dataset

Table 5: The eventual results summarized for the 8 Common Classes datasets and fine-tuning

on the Xception model using a learning rate of 1e-04 and Adam Optimizer.

33

Remarks

Precision (%)

Recall (%)

F1l-score (%)

Source: 8 common classes of
C-PBC dataset

Target: 8 common classes of
CRV-PBS dataset

Testing on 8 common classes of

CRV-PBS dataset

78.89

78.31

77.11

Source: 8 common classes of
C-PBC dataset

Target: 8 common classes of
CRV-PBS dataset

Testing on 8 common classes of

C-PBC dataset

95.89

Source: 8 common classes of
CRV-PBS dataset

Target: 8 common classes of
C-PBC dataset

Testing on 8 common classes of

CRV-PBS dataset

86.71

85.67

84.89

Source: 8 common classes of
CRV-PBS dataset

Target: 8 common classes of
C-PBC dataset

Testing on 8 common classes of

C-PBC dataset

93.11

93.21

93.37

Optimizer.

4.3.2. Results

While testing domain adaptation, we need to train two times, i.e., using 8

34

Table 6: The eventual results by performing domain adaptation, summarized for the 8 Common

Classes datasets and fine-tuning on Xception model using a learning rate of le-04 and Adam

common classes of the C-PBC dataset as the source and 8 common classes of the

CRV-PBS dataset as the target and vice versa. In both cases, we need to find

the results of the model on the test set of both the dataset. First, we perform
domain adaptation on the source containing 8 common classes of the C-PBC
dataset and the target containing 8 common classes of the CRV-PBS dataset.
When we evaluated the results on the testing set of the 8 common classes of the
CRV-PBS dataset, we get precision, recall, and Fl-score as 78.89%, 78.31%
and 77.11% respectively as shown in Table[6] When we test the same model on
the 8 common classes of the C-PBC dataset, we see a slight increase in precision,
recall, and Fl-score for the 8 classes. The recorded values are 95.64%, 95.77%
and 95.80% respectively, as shown in Table @ This is the best we can record for
the 8 common classes combined. The training loss graph is shown in Figure [20]
The loss shows the variation of losses of source classifier and feature extractor,
which gets minimized as training progresses, and domain classifier, which gets
maximized as training progresses. Similarly, the training accuracy captured by
the source classifier during training is also shown in Figure The test data
received an accuracy of 96.32% on 8 common classes of the C-PBC dataset
whereas 82.34% on 8 common classes of the CRV-PBS dataset.

When we perform domain adaptation using 8 common classes of the CRV-
PBS dataset as the source and 8 common classes of C-PBC dataset as the target,
we get, the best-recorded results on the test dataset for the 8 common classes of
the CRV-PBS dataset. The precision, recall and Fl-score are 86.71%, 85.67%
and 84.89% respectively. The same model, when tested on 8 common classes of
the C-PBC dataset, we get a precision, recall, and F1-score of 93.11%, 93.21%
and 93.37% respectively. Similar losses were recorded for this training in Figure
This shows domain adaptation does a good job of improving the classification

of datasets containing common classes.

5. Dicsussion

To compare the classification accuracy of the different classifiers, we have
performed a comparative study, as shown in Table[5] We trained the dataset

on about 13050 images from the 8 common classes of the C-PBC dataset and

35

about 544 images from the 8 common classes of the CRV-PBS dataset without
performing data augmentations. The split of the dataset was about 80% for
training and 20% for testing. We trained the Xception model, which showed
exceptional performance in both the datasets on 8 common classes of the C-PBC
dataset, recording a precision of 94.78%, recall of 94.77% and F1-score of
94.79%. Note that this is lesser than the metrics recorded when the model was
trained on the C-PBC dataset, this is because of lesser data used in training the
8 classes of the same dataset. The model trained on 8 common classes of the
C-PBC dataset when tested on 8 common classes of the CRV-PBS dataset gives
lower results compared to doing vice versa. It seems like when a model is trained
on 8 common classes of CRV-PBS data; it can classify the C-PBC dataset better
than when the reverse is done. This may be because of the high-quality images
of our dataset. For further study, we mix the data from both the datasets and
perform an overall training which gives overall good results as shown in Table

The results of the full pipeline are shown in Figure We can see that the
classification of the 8 common classes has improved using the domain adaptation
pipeline. The detected class above the box in black color shows the initial class
detected by the Mask R-CNN pipeline, whereas the detected class below the
box in blue shows the result of the domain adaptation pipeline. We can see that
the incorrect detection of Neutrophil is now correctly classified as a Band cell
in Figure 22B] The case is unique in segmenting the mixed classes as shown
in Figure and Figure We see that a combination of both results will
increase the performance in classifying the type of cell. In some worst cases, the
domain adaptation pipeline might give wrong results when there is confusion
about the labeling of the cells. We assume that training in more amount of data
via Mask R-CNN will increase the segmentation and classification accuracy of
the pipeline. This is novel research that builds a full pipeline from scratch to
segment and detects all 10 classes of blood cell images according to Kolkata’s
demography. This work can be extended to count all the blood cell types by
generating automated blood test reports with just minor modifications. The

JSON data that is extracted from the model can get the count and types of cells

36

at a very reasonable speed, hence automating a major part of the healthcare

industry.

5.1. Future scope

Because of the efficiency of Mask R-CNN in segmenting cells, we have
developed a tool to point toward a folder containing several smear slides, and
the tool will generate information regarding the type of cell and polygon masks
of different cells present in the slide. In the future, we are planning to create an
annotation tool that will leverage the masking capabilities of Mask R-CNN to
automate the masking of newer slides. The annotator might have a minimum
intervention to mask the out-of-distribution images. In this way, we can label a
huge amount of slides in no time. The result of the JavaScript Object Notation

(JSON) data generated is shown below:

37

{"data":

{"o":

{"filename":"IMG_4302. jpg", "height":3024,"width":4032,
"masks" :

[

{"class_name":"neutrophil","score":0.9632735252,
"bounding_box": { "x1":22, "x2":740,
"y1":436,"y2":1169},

"vertices":[[397.0,1142.5], ... ,

[396.0,1141.5], [397.0,1142.5]]},

{"class_name":"neutrophil", "score":0.9132735252,
"bounding_box": {"x1":223, "x2":940,

"y1":936, "y2":1769},

"vertices":[[223.6,940.5], ... ,

[224.3,939.4]1, [223.6,940.5]1}

]

Po

L P

}
}

A sample of JSON file generated using Mask R-CNN based tool

This data can be ported in any format. For our purpose, we have used CVAT
annotation format in Extensible Markup Language (XML). In the future, we
may create our own tool and it may have our own format for easy annotation.
This is the future goal of this project, to create tools that will make the model

learn new features actively with minimum human intervention.

38

5.2. Computational requirements and Complexities of the models

The analysis of model complexities in our study is meticulously presented in
Table[7]and Table[8] considering a comprehensive set of statistical metrics. These
metrics encompass the number of convolutional layers and fully connected (dense)
layers, total, trainable, and non-trainable parameters (in millions), memory
utilization (in Gigabytes), file size (in Megabytes), as well as average training
and inference times indicated as mean + standard deviation (u 4 o in seconds).
It is noteworthy that all models underwent training on a singular NVIDIA
GeForce RTX 3080 Ti GPU, implying potential variations in these statistics
when utilizing alternative GPU configurations.

Table [7| presents the outcomes of our experiments (discussed in Sections
and , utilizing the PBC and C-PBC datasets to identify the most effective
convolutional backbone for both datasets. The observations from Table [7] reveal
that, as a rule, the convolutional backbone adopted from state-of-the-art (SOTA)
models was chosen, with three dense layers following flattening, as discussed
in Section It’s worth noting that the relationship between the number of
parameters and training time is not strictly linear; while larger parameter counts
tend to extend training durations, this dependency can be influenced by the
internal connectivity patterns (Vento & Percannella) [2019)) within the model.
More intricate architectures may demand additional computational resources
and training time, even when the parameter count is relatively lower than that
of a simpler architecture. The number of trainable parameters, referring to the
model’s weights and biases requiring updates during training, plays a crucial role.
Although the total parameter count remains constant, training time per epoch
fluctuates based on the number of parameters undergoing updates. Generally, a
frozen model variant consumes less time than a fine-tuned one that necessitates
the entire model to be trained. In summary, the statistics in Table 1 highlight
that models with more parameters tend to demand more time for both training
and inference compared to models with fewer parameters.

In this paper, we describe the GPU memory requirement, specifically ad-

dressing the memory needed to process a single batch of data in gigabytes (GBs).

39

We have developed a dedicated function to estimate the memory consumption
of deep learning models when handling data in batch mode. Our function is
implemented using the TensorFlow Keras backend and is designed to analyze
model complexities comprehensively. It calculates memory usage for each layer’s
output shape, recursively accounts for internal sub-models, and provides detailed
statistics, including trainable and non-trainable parameter counts. Additionally,
it determines the size of a single numerical element and calculates the total
memory usage in bytes, converting it into gigabytes. This functionality serves
as an indispensable tool for both researchers and practitioners, offering valu-
able insights into the memory requirements of deep learning models. It can be
instrumental in making informed decisions regarding resource allocation and
optimization strategies across various computational contexts. It is noted that
more complex models require much more memory footprint than that of lower
complexity models.

In our study, we extend our experiments to encompass the CRV-PBS dataset,
presenting the resulting statistics in Table |8] These findings are similar to those
elucidated in Table [7] as detailed in Sections [f.1.1] and [£.1] In the context of
selecting an optimal backbone for our Domain Adaptation pipeline, elaborated
in Section we have chosen the Xception model. This choice stems from its
superior performance in classifying both datasets. Notably, the Xception model
stands out with a lower number of convolutional layers compared to most models,
resulting in reduced inference and training times, particularly when applied to
the CRV-PBS dataset. Our approach strikes a balance, emphasizing a trade-off
between reduced inference time for most models while maintaining accuracy and
precision in prediction. The experimental results underscore the effectiveness
of our model in achieving this balance, yielding an optimized, lower-complexity
model with faster inference and training times than most models, all while

enhancing classification prediction accuracy and precision.

40

v

Model Dataset Training Total # of Total # of Total Trainable Non-Trainable Memory File Size Train Epoch Inference
Name Name Type Conv Layers Dense Layers Params (M) Params (M) Params (M) Usage (GB) (MB) time (in s) time (in s)
C-PBC fully trained 94 3 22.0694 22.0350 0.0344 2.8340 253.6688 119.7687 £ 9.8956 0.0644 £ 0.0390
C-PBC freezed 94 3 22.0694 0.2667 21.8028 2.8340 87.0698 117.4597 £ 5.2568 0.0744 £ 0.0555
Inception V3 PBC fully trained 94 3 22.0694 22.0350 0.0344 2.8340 253.6688 148.1968 + 41.0319 0.0773 £ 0.0516
PBC freezed 94 3 22.0694 0.2667 21.8028 2.8340 87.0698 159.4549 + 38.7494 0.0867 £ 0.0963
C-PBC fully trained 244 3 54.5379 54.4773 0.0605 7.0000 626.9535 215.2427 £+ 7.4374 0.0712 £ 0.0636
Inception C-PBC freezed 244 3 54.5379 0.2011 54.3367 7.0000 211.5637 162.4180 + 10.2264 0.1121 + 0.0828
ResNetV2 PBC fully trained 244 3 54.5379 54.4773 0.0605 7.0000 626.9653 223.7845 £+ 0.7555 0.0729 £ 0.0535
PBC freezed 244 3 54.5379 0.2011 54.3367 7.0000 211.5637 135.6346 &+ 6.2723 0.0783 £ 0.0603
C-PBC fully trained 268 3 85.4374 85.2408 0.1967 17.6370 981.3203 462.1109 £ 1.4508 0.0765 + 0.0731
C-PBC freezed 268 3 85.4374 0.5206 84.9168 17.6370 332.6796 189.3978 £+ 1.0356 0.0736 + 0.0137
NASNetLarge
PBC fully trained 268 3 85.4374 85.2408 0.1967 17.6370 981.3203 459.2430 £+ 1.4518 0.0889 + 0.0256
PBC freezed 268 3 85.4374 0.5206 84.9168 17.6370 332.6796 218.1738 £+ 3.1188 0.0798 £ 0.0536
C-PBC fully trained 13 3 14.7847 14.7847 0.0000 2.3970 169.3445 151.5882 £ 0.6383 0.0461 £ 0.0099
C-PBC freezed 13 3 14.7847 0.0701 14.7147 2.3970 57.0247 87.7355 + 0.4555 0.0462 £ 0.0096
veaie PBC fully trained 13 3 14.7847 14.7847 0.0000 2.3970 169.3445 150.3752 £ 0.8648 0.0461 £ 0.0099
PBC freezed 13 3 14.7847 0.0701 14.7147 2.3970 57.0247 87.5087 + 2.4485 0.0464 £ 0.0106
C-PBC fully trained 40 3 21.1281 21.0736 0.0545 5.5510 242.1414 140.1736 £+ 0.2560 0.0478 £ 0.0201
. C-PBC freezed 40 3 21.1281 0.2667 20.8615 5.5510 83.0389 91.1776 4+ 0.4915 0.0476 £ 0.0201
Xception PBC fully trained 40 3 21.1281 21.0736 0.0545 5.5510 242.1414 140.3787 4+ 0.3783 0.0475 £+ 0.0177
PBC freezed 40 3 21.1281 0.2667 20.8615 5.5510 83.0389 90.0230 & 1.3435 0.0474 £ 0.0199
C-PBC fully trained 104 3 42.9248 42.8195 0.1053 8.9790 492.3575 202.0621 + 0.5078 0.0554 + 0.0357
C-PBC freezed 104 3 42.9248 0.2667 42.6582 8.9790 166.7687 111.0408 £ 1.2891 0.0559 £ 0.0327
Resnet101 PBC fully trained 104 3 42.9248 42.8195 0.1053 8.9790 492.3575 202.2891 + 0.8241 0.0569 + 0.0338
PBC freezed 104 3 42.9248 0.2667 42.6582 8.9790 166.7687 110.6711 £ 0.3967 0.0546 £ 0.0320
C-PBC fully trained 0 19 21.6575 21.6575 0.0000 10.3453 242.48 154.34 £ 0.4521 0.1232 £ 0.0467
: C-PBC freezed 0 19 21.6575 0.2667 21.3908 10.3453 162.23 102.33 £ 1.2134 0.0829 + 0.0324
Vit PBC fully trained 0 19 21.6575 21.6575 0.0000 10.3453 242.48 154.34 £ 0.4521 0.1202 £ 0.0578
PBC freezed 0 19 21.6575 0.2667 21.3908 10.3453 162.23 102.33 £ 1.2134 0.0874 + 0.0864

Table 7: The assessment of model complexities for all models trained on the PBC and C-PBC datasets involves the application of state-of-the-art

models with a batch size of 16 and a learning rate set at le-04 for evaluation on their respective datasets. Throughout, 'M’ represents millions, ’GB’

signifies Gigabytes, and ’s’ stands for seconds in our context. All the models were trained and tested using a single NVIDIA GeForce RTX 3080 Ti

GPU.

4%

Model Total # of Total # of Total Trainable Non-Trainable Memory File Size Train Epoch Inference
Name Conv Layers Dense Layers Params (M) Params (M) Params (M) Usage (GB) (MB) time (in s) time (in s)
Inception V3 94 3 22.0695 22.0351 0.0344 2.8340 253.6691 57.3908 £+ 0.8968 0.1043 + 0.0864 1
Inception 244 3 54.5379 54.4774 0.0605 7.0000 626.9542 152.2778 £ 1.1853 0.2043 £ 0.3543

ResNetV2

NASNetLarge 268 3 85.4375 85.2408 0.1967 17.6370 981.3203 245.2935 £+ 1.0038 0.2442 £ 0.0342
VGG16 13 3 14.7848 14.7848 0.0000 2.3970 169.3453 100.7890 £ 0.6179 0.2033 £ 0.0192
Xception 40 3 21.1282 21.0737 0.0545 5.5510 242.1432 105.0321 £+ 2.3296 0.1522 £ 0.0689
Resnet101 104 3 42.9249 42.8196 0.1053 8.9790 492.3583 157.7575 £+ 3.1522 0.2447 £ 0.1200
ViT 0 19 21.6575 21.6575 0.0000 10.3453 242.48 98.7612 £ 0.7352 0.2763 £ 0.4154
Domain Adaptation 40 6 28.3379 28.2834 0.0545 1.8070 324.6068 134.6777 £ 0.4488 0.1007 £ 0.0493

Xception model

Table 8: The assessment of model complexities for all models trained on the CRV-PBS dataset entails the utilization of state-of-the-art architectures.

These models were tested with a common batch size of 16 and a learning rate of le-04, tailored to their respective datasets. Notably, the Domain

Adaptation model was trained on a combined dataset comprising the 8 common classes of CRV-PBS and PBC cropped. It’s important to note that

"M’ represents millions, ’GB’ signifies Gigabytes, and ’s’ stands for seconds in our context. All the models were trained and tested using a single

NVIDIA GeForce RTX 3080 Ti GPU.

6. Conclusion

In this study, we created a novel dataset comprising peripheral blood smears
for benchmarking instance segmentation pipelines. Through investigations, we
have noticed that Mask R-CNN alone cannot provide high classification accuracy,
so we use innovative techniques such as domain adaptation to increase the
performance of classification. Since the creation and collection of blood smear
data are very expensive, we rely on imbalanced and fewer source data and
a similar target dataset for this task. The convolution backbone for domain
adaptation has been selected by performing a comparative study using transfer
learning, which shows excellent results in both datasets. Using domain adaptation
successfully enhances the classification performance of the Mask R-CNN pipeline.
Our statistical experiments examining computational complexities reveal that our
Domain Adaptation model excels in achieving a harmonious equilibrium among
key computational resources, including the number of parameters, training time,
and inference time. Importantly, this balance is achieved without compromising
on the model’s ability to deliver notably superior accuracy and precision in
classifications compared to alternative models.

The initial comparative study on classifying the PBC dataset shows we can
surpass the state-of-the-art by using whole slides rather than cropped cells. Using
transfer learning helps to get impressive performance with relatively less amount
of data. This will help the medical practitioners and doctors to cater to a large
group of individuals in the time of emergency. The current research provides
the outline of the creation of a larger dataset that can get deployable results
even by the use of Mask R-CNN. The only limitation of this work is the current
metrics record precision of 86.71%, a recall of 85.67%, and an F1-score of 84.89%
even after domain adaptation. Medical sectors need stronger confidence in the
detection of cell types for automating the process of blood tests. Increasing the
dataset size will help to resolve this issue, for which we are planning to add
more data soon. We are also planning to release the data for a benchmarking

challenge which will test the precision, recall, and Fl-score of different novel

43

methods. The future scope of this work lies in the creation of an annotation
software that can annotate a diverse domain of peripheral blood smear data

automatically with minimum human intervention.

Acknowledgement(s)

The authors are thankful to the editors and anonymous reviewers for their
rigorous comments that helped to improve the quality of this paper significantly.
The authors are also grateful to Swathy Prabhu Mj, Ramakrishna Mission
Vivekananda Educational and Research Institute, for arranging machines with
Asus RTX 2080 Ti (12 GB VRAM) and Quadro GV100 (32 GB VRAM) GPUs
with 64 GB RAM to hasten the research. The authors are also thankful to

Dripta Mj for his suggestions.

Disclosure statement

e Conflict of interest/Competing interests - The authors declare no competing

interests.

e Ethics approval - The data is ethically cleared for study and future publi-

cation.

e Consent to participate - Waiver for consent was approved by the ethical

committee.

e Consent for publication - The waiver for consent was approved by the

ethical committee.

e Availability of data and materials: We will make the data available upon
publication of this paper, on the following URL https://github.com/
Jimut123/RV-PBS. This data should not be used for commercial purposes.

e Code availability - The code will be available at the following URL upon
publication: https://github.com/Jimut123/cellsegl All the models

44

https://github.com/Jimut123/RV-PBS
https://github.com/Jimut123/RV-PBS
https://github.com/Jimut123/cellseg

and tools created during this study will also be made available in the same

URL.

e Authors’ contributions (CRediT) - Jimut Bahan Pal: Conceptualization,
Investigation, Methodology, Software Validation, Formal analysis, Data
Curation, Writing - Original Draft, Writing - Review & Editing, Visual-
ization. Aniket Bhattacharyea: Investigation, Methodology, Software
Validation, Data Curation. Debasis Banerjee: Data Curation, Supervi-
sion, Project administration. Br. Tamal Maharaj: Supervision, Project

administration, Resources, Writing - Review & Editing.

Funding

There was no funding available for this study.

7. Appendices

Appendix A. Evaluation metrics

In this work, the following evaluation metrics are used:

Accuracy (AC) = 75— :/z:zi i ?1\37 Y FN 2)
Recall or Sensitivity (SE) = TPz—ji—ipFN (3)
Precision (PC) = Tszl—ipFP (4)
X
F1-Score = —P(gi SgE) (5)

Where TP is True Positive, TN is True Negative, FP is False Positive and
FN is False Negative. The binary Cross-Entropy loss function was used in the

Domain Classifier. It can be formulated as:

N
Z yz log(y:) + (1 — y7) log(1 —y;)) (6)

45

Where y; is the predicted class and y/ is the original class value (log = In,

natural log). Categorical Cross-Entropy loss function can be written as :

Ly(y) = —% (Z Yl -lO%(%‘)) (7)

Where y; is the predicted class, and y; is the true value of a label predicted,

generally in one-hot-encoded form.
Appendix B. Unsupervised Domain Adaptation

Here is a brief discussion of Ganin’s (Ganin & Lempitsky, [2015) Unsupervised
domain adaptation. Let us consider input x passed to the domain adaptation
pipeline. Here, x € X and y € Y are input images and corresponding label pairs.
We can consider two distributions, i.e., 8 common classes of CRV-PBS as source
S(z,y) and 8 common classes of C-PBC as Target T'(x,y) distribution. Since
we are taking the common classes from both datasets, the images might differ
by some domain shift. The primary aim of the domain adaptation pipeline is to
predict Y from X. During training, we take a huge number of samples from the
target distribution, which helps the classification model to improve classification
performance on the source distribution.

Since there are two domains of similar data, we have an extra parameter to

consider, i.e., domain d,

0, if x; € Source domain, y; € Y are known
1, if x; € Target domain, y; € Y are necessarily not known

The task is to predict the target domain’s input samples in test time. For every
input sample x € X, we can use a Feed Forward Deep Learning Convolutional
Neural Network to predict y € Y and its corresponding domain labels d; €
{0,1}. From Figure we get a D dimensional feature vector f € RP by
passing = through Gy. Here, we have used the Xception (Chollet, 2017)) model’s
convolutional backbone as Gy for extracting features, since it performed relatively

well in classifying the cropped cell images of both domains.

46

During training, we try to minimize the loss of Gy and Gy, i.e., feature
extractor and label predictor. This is done by passing images from both the
domains, i.e., S(z,y) and T'(z,y) to Gy. We try to make these two distributions,
i.e., source, S(f) = {Gy(z;0¢)||lx € S(x)} and target, T(f) = {Gs(x;0f)||x €
T(x)} as close to each other. We try to maximize the loss of the Domain classifier,
i.e., Categorical Cross-Entropy loss, as discussed in Appendix [7] This helps the
model get more confused about the domains in which the images belong, hence
the model learns domain invariant features 6y. The total loss can be formulated

as:

E(0f,0y,0a) = > (Gy(Gf(xﬁef);gy)ayi) -
i=1..N
d;=0

AY La <Gd(Gf(zi§9f)§9d)7yi) (8)

i=1..N
- S L00) <A Y L6500
i=1..N i=1..N
diZO
Here, since the label predictor Ly(.,.) is a classifier, hence the loss is multino-
mial. Similarly, Lg(.,.), the domain classifier loss is logistic. L} and L} are the

corresponding loss functions that are evaluated at the i*" training example. We

are seeking the parameters éf, éy7 6, that deliver a saddle point of the function:

(éf’ éy) = arg gnlgn E(0f,0,, éd) 9)
Y%
0y = arg rréaxE(éf, éy, 04) - (10)

At the saddle point, 4 of the domain classifier minimizes the domain classifi-
cation loss, while parameters 6, minimize the label predictor loss. Discriminative
features are learned by the label predictor. It maximizes the domain classification
loss learning domain invariant features. The overall architecture of this process

can be seen in Figure

47

Standard optimizers such as Stochastic Gradient Descent can be used as
optimizers. The stationary saddle point is a part of the following stochastic
updates, where p may be considered as the learning rate, which may vary over

time:

oL, OL:
0y +— 0f — M(&O;_/\Be;l> (11)
oL
0 — Oy -l (12)
Y
OL!
0 <+— 0q — /14805 (13)

A special layer known as Gradient Reversal Layer (GRL) can achieve the
reduction as shown in Equation [TI] The layer is inserted between the feature
extractor and the domain classifier, as shown in Figure The meta-parameter
is not updated by back-propagation. During forward propagation, GRL acts
as an identity transform. During back-propagation, the GRL multiplies the
gradient by -\ and sends it to the previous layer. Hence the total loss can be

formulated as [I4]

E(05,0,,04) = Z Ly <Gy(Gf(xi§9f)§9y)ayi) +

> Lo (Gulha(Grlasst)ib0). (14)

i=1..N
After learning the label predictor, y(z) = Gy (Gf(x;60¢); 6,) can predict inputs

from both the domains.

References

Acevedo, A., Alférez, S., Merino, A., Puigvi, L., & Rodellar, J. (2019).
Recognition of peripheral blood cell images using convolutional neu-
ral networks. Computer Methods and Programs in Biomedicine,

180, 105020. URL: https://www.sciencedirect.com/science/article/

48

https://www.sciencedirect.com/science/article/pii/S0169260719303578
https://www.sciencedirect.com/science/article/pii/S0169260719303578

pii/S0169260719303578. doithttps://doi.org/10.1016/].cmpb.2019]
105020.

Acevedo, A., Merino, A., Alferez, S., Molina, A., Boldu, L., & Rodellar, J.
(2020). A dataset for microscopic peripheral blood cell images for de-
velopment of automatic recognition systems. Mendeley Data, V1, doi:

10.17632/snkd93bnjr.1.

Adewoyin, A., & Nwogoh, B. (2014). Peripheral blood film - a review. Annals
of Ibadan Postgraduate Medicine, 12, 71 — 79.

Al-qudah, R., & Suen, C. Y. (2020). A survey on peripheral blood smear
analysis using deep learning. In Y. Lu, N. Vincent, P. C. Yuen, W.-S.
Zheng, F. Cheriet, & C. Y. Suen (Eds.), Pattern Recognition and Artificial
Intelligence (pp. 725-738). Cham: Springer International Publishing.

Beucher, S. (1994). Watershed, hierarchical segmentation and waterfall al-
gorithm. In J. Serra, & P. Soille (Eds.), Proceedings of the 2nd In-
ternational Symposium on Mathematical Morphology and Its Applica-
tions to Image Processing, (ISMM) 199/, Fontainebleau, France, Septem-
ber 1994 (pp. 69-76). Kluwer volume 2 of Computational Imaging
and Vision. URL: https://doi.org/10.1007/978-94-011-1040-2_10.
do0i:10.1007/978-94-011-1040-2_10.

Bringay, S., Barry, C., & Charlet, J. (2006). Annotations for the collaboration
of the health professionals. AMIA - Annual Symposium proceedings. AMIA
Symposium, (pp. 91-5).

Chadaga, K., Prabhu, S., Bhat, K. V., Umakanth, S., & Sampathila, N. (2022).
Medical diagnosis of COVID-19 using blood tests and machine learning.
Journal of Physics: Conference Series, 2161, 012017. URL: https://
doi.org/10.1088/1742-6596/2161/1/012017. doi:10.1088/1742-6596/
2161/1/012017.

49

https://www.sciencedirect.com/science/article/pii/S0169260719303578
https://www.sciencedirect.com/science/article/pii/S0169260719303578
https://www.sciencedirect.com/science/article/pii/S0169260719303578
http://dx.doi.org/https://doi.org/10.1016/j.cmpb.2019.105020
http://dx.doi.org/https://doi.org/10.1016/j.cmpb.2019.105020
https://doi.org/10.1007/978-94-011-1040-2_10
http://dx.doi.org/10.1007/978-94-011-1040-2_10
https://doi.org/10.1088/1742-6596/2161/1/012017
https://doi.org/10.1088/1742-6596/2161/1/012017
http://dx.doi.org/10.1088/1742-6596/2161/1/012017
http://dx.doi.org/10.1088/1742-6596/2161/1/012017

Chollet, F. (2017). Xception: Deep learning with depthwise separable con-
volutions. In 2017 IFEE Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 1800-1807). doii10.1109/CVPR.2017.195.

Dai, J., Li, Y., He, K., & Sun, J. (2016). R-fcn: Object detection via region-based
fully convolutional networks. URL: https://proceedings.neurips.cc/

paper/2016/file/577ef11564f3240ad5b9b413aa7346ale-Paper. pdf.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition (pp. 248-255). doi:10.1109/
CVPR.2009.5206848.

Deshpande, N. M., Gite, S., & Aluvalu, D. R. (2021). A review of microscopic
analysis of blood cells for disease detection with ai perspective. PeerJ

Computer Science, 7.

Deshpande, N. M., Gite, S., Pradhan, B., Kotecha, K., & Alamri, A. M. (2022).
Improved otsu and kapur approach for white blood cells segmentation
based on lebtlbo optimization for the detection of leukemia. Mathematical

biosciences and engineering : MBE, 192, 1970-2001.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J.,
& Houlsby, N. (2021). An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning

Representations. URL: https://openreview.net/forum?id=YicbFdNTTy.

Endeshaw, T., Gebre, T., Ngondi, J., Graves, P. M., Shargie, E. B., Ejigsemahu,
Y., Ayele, B., Yohannes, G., Teferi, T., Messele, A., Zerihun, M., Genet,
A., Mosher, A. W., Emerson, P. M., & Richards, F. O. (2008). Evaluation
of light microscopy and rapid diagnostic test for the detection of malaria
under operational field conditions: a household survey in ethiopia. Malaria

Journal, 7, 118 — 118.

50

http://dx.doi.org/10.1109/CVPR.2017.195
https://proceedings.neurips.cc/paper/2016/file/577ef1154f3240ad5b9b413aa7346a1e-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/577ef1154f3240ad5b9b413aa7346a1e-Paper.pdf
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
https://openreview.net/forum?id=YicbFdNTTy

Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by back-
propagation. In F. Bach, & D. Blei (Eds.), Proceedings of the 32nd Inter-
national Conference on Machine Learning (pp. 1180-1189). Lille, France:
PMLR volume 37 of Proceedings of Machine Learning Research. URL:
https://proceedings.mlr.press/v37/ganinl5.html.

Guan, H., & Liu, M. (2022). Domain adaptation for medical image analysis:
A survey. IEEE Trans. Biomed. Eng., 69, 1173-1185. URL: https://doi.
org/10.1109/TBME. 2021.3117407. doi;10.1109/TBME. 2021.3117407.

He, K., Gkioxari, G., Dolldr, P., & Girshick, R. (2017). Mask r-cnn. In 2017
IEEFE International Conference on Computer Vision (ICCV) (pp. 2980—
2988) doi:10.1109/ICCV.2017.322.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 770-778). doi{10.1109/CVPR.2016.90.

Hoffman, J. F. (2016). Biconcave shape of human red-blood-cell

ghosts relies on density differences between the rim and dim-

ple of the ghost’s plasma membrane. Proceedings of the Na-
tional Academy of Sciences, 113, 14847-14851. URL: https://wuw,
pnas.org/content/113/51/14847. doi:10.1073/pnas. 1615452113,

arXiv:https://www.pnas.org/content/113/51/14847.full.pdfl

Hsu, H.-K., Hung, W.-C., Tseng, H.-Y., Yao, C.-H., Tsai, Y.-H., Singh, M., &
Yang, M.-H. (2019). Progressive domain adaptation for object detection. In
Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops.

Ibtehaz, N., & Rahman, M. S. (2020). Multiresunet: Rethinking the u-net archi-
tecture for multimodal biomedical image segmentation. Neural Networks,

121, 74-87.

o1

https://proceedings.mlr.press/v37/ganin15.html
https://doi.org/10.1109/TBME.2021.3117407
https://doi.org/10.1109/TBME.2021.3117407
http://dx.doi.org/10.1109/TBME.2021.3117407
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/CVPR.2016.90
https://www.pnas.org/content/113/51/14847
https://www.pnas.org/content/113/51/14847
http://dx.doi.org/10.1073/pnas.1615452113
http://arxiv.org/abs/https://www.pnas.org/content/113/51/14847.full.pdf

Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with
class imbalance. J. Big Data, 6, 27. URL: https://doi.org/10.1186/
s40537-019-0192-5. doi:10.1186/s40537-019-0192-5.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization.
In Y. Bengio, & Y. LeCun (Eds.), 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. URL: http://arxiv.org/abs/1412.6980.

Kouzehkanan, Z. M., Saghari, S., Tavakoli, S., Rostami, P., Abaszadeh, M.,
Mirzadeh, F., Satlsar, E. S., Gheidishahran, M., Gorgi, F. A., Mohammadi,
S., & Hosseini, R. (2022). A large dataset of white blood cells containing cell
locations and types, along with segmented nuclei and cytoplasm. Scientific

Reports, 12.

Kukar, M., Guncar, G., Vovko, T., Podnar, S., Cernelc, P., Brvar, M., Zalaznik,
M., Notar, M., Moskon, S., & Notar, M. (2021). Covid-19 diagnosis by

routine blood tests using machine learning. Scientific Reports, 11.

Labati, R. D., Piuri, V., & Scotti, F. (2011). All-idb: The acute lym-
phoblastic leukemia image database for image processing. In B. Macq,
& P. Schelkens (Eds.), 18th IEEE International Conference on Image
Processing, ICIP 2011, Brussels, Belgium, September 11-14, 2011 (pp.
2045-2048). IEEE. URL: https://doi.org/10.1109/ICIP.2011.6115881.
doi:10.1109/ICIP.2011.6115881.

Lee, S. M. W., Shaw, A., Simpson, J. L., Uminsky, D. T., & Garratt, L. W. (2021).
Differential cell counts using center-point networks achieves human-level

accuracy and efficiency over segmentation. Scientific Reports, 11.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar,
P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In
D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision —
ECCV 2014 (pp. 740-755). Cham: Springer International Publishing.

92

https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
http://dx.doi.org/10.1186/s40537-019-0192-5
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICIP.2011.6115881
http://dx.doi.org/10.1109/ICIP.2011.6115881

Linden, M., Ward, J. M., & Cherian, S. (2012). 19 - hematopoietic and lymphoid
tissues. In P. M. Treuting, & S. M. Dintzis (Eds.), Comparative Anatomy and
Histology (pp. 309-338). San Diego: Academic Press. URL: https://wuw|
sciencedirect.com/science/article/pii/B9780123813619000196.
doithttps://doi.org/10.1016/B978-0-12-381361-9.00019-6.

Liu, S., & Deng, W. (2015). Very deep convolutional neural network based image
classification using small training sample size. In 2015 8rd IAPR Asian
Conference on Pattern Recognition (ACPR) (pp. 730-734). doi:10.1109/
ACPR.2015.7486599.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg,
A. C. (2016). Ssd: Single shot multibox detector. In B. Leibe, J. Matas,
N. Sebe, & M. Welling (Eds.), Computer Vision — ECCV 2016 (pp. 21-37).
Cham: Springer International Publishing.

Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., & Kim, K. (2018).
Image to image translation for domain adaptation. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 4500-4509).
doi:10.1109/CVPR.2018.00473.

Pal, J. B. (2022). Holistic network for quantifying uncertainties in medical
images. In A. Crimi, & S. Bakas (Eds.), Brainlesion: Glioma, Multiple Scle-
rosis, Stroke and Traumatic Brain Injuries (pp. 560-569). Cham: Springer

International Publishing.

Pal, J. B., & Mj, D. (2023). Improving multi-scale attention networks: Bayesian
optimization for segmenting medical images. The Imaging Science Journal,

71, 33-49. doij10.1080/13682199.2023.2174657.

Pal, J. B., & Paul, N. (2021). Classifying chest x-ray covid-19 images via transfer
learning. In 2021 Ethics and Ezplainability for Responsible Data Science
(EE-RDS) (pp. 178). doi:10.1109/EE-RDS53766.2021.9708580.

93

https://www.sciencedirect.com/science/article/pii/B9780123813619000196
https://www.sciencedirect.com/science/article/pii/B9780123813619000196
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-381361-9.00019-6
http://dx.doi.org/10.1109/ACPR.2015.7486599
http://dx.doi.org/10.1109/ACPR.2015.7486599
http://dx.doi.org/10.1109/CVPR.2018.00473
http://dx.doi.org/10.1080/13682199.2023.2174657
http://dx.doi.org/10.1109/EE-RDS53766.2021.9708580

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22, 1345-1359. doi:10.1109/TKDE.
2009.191.

Pandey, P., P, P. A., Kyatham, V., Mishra, D., & Dastidar, T. R. (2020). Target-
independent domain adaptation for wbc classification using generative
latent search. IEEE Transactions on Medical Imaging, 39, 3979-3991.
doi:10.1109/TMI.2020.3009029.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:
Unified, real-time object detection. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (pp. 779-788). doi:10.1109/CVPR,
2016.91.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards
real-time object detection with region proposal networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in
Neural Information Processing Systems. Curran Associates, Inc. vol-
ume 28. URL: https://proceedings.neurips.cc/paper_files/paper/
2015/file/14bfabbb14875e45bba028a21ed38046-Paper . pdf.

Robbins, H. (2007). A stochastic approximation method. Annals of Mathematical
Statistics, 22, 400-407.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In N. Navab, J. Hornegger, W. M. Wells,
& A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted
Intervention — MICCAI 2015 (pp. 234-241). Cham: Springer International
Publishing.

Schlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B., Glocker,
B., & Rueckert, D. (2019). Attention gated networks: Learning to
leverage salient regions in medical images. Medical Image Analysis,

53, 197-207. URL: https://www.sciencedirect.com/science/article/

04

http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TMI.2020.3009029
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S1361841518306133
https://www.sciencedirect.com/science/article/pii/S1361841518306133

pii/S1361841518306133. doichttps://doi.org/10.1016/j.media.2019,
01.012.

Sekachev, B., Manovich, N., Zhiltsov, M., Zhavoronkov, A., Kalinin, D., Hoff,
B., TOsmanov, Kruchinin, D., Zankevich, A., DmitriySidnev, Markelov,
M., Johannes222, Chenuet, M., a andre, telenachos, Melnikov, A., Kim,
J., Hlouz, L., Glazov, N., Priyad607, Tehrani, R., Jeong, S., Skubriev,
V., Yonekura, S., vugia truong, zliang7, lizhming, & Truong, T. (2020).
opencv/cvat: v1.1.0. URL: https://doi.org/10.5281/zenodo.4009388|
doi:10.5281/zenodo .4009388.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep inside convolutional
networks: Visualising image classification models and saliency maps. In

Workshop at International Conference on Learning Representations.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (pp. 2818-2826).
doi:10.1109/CVPR.2016.308.

Thomas, E., Pawan, S. J., Kumar, S., Horo, A., Niyas, S., Vinayagamani,
S., Kesavadas, C., & Rajan, J. (2021). Multi-res-attention unet: A cnn
model for the segmentation of focal cortical dysplasia lesions from magnetic
resonance images. IEEE Journal of Biomedical and Health Informatics, 25,

1724-1734. doii10.1109/JBHI.2020.3024188.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L. u., & Polosukhin, I. (2017). Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neu-
ral Information Processing Systems. Curran Associates, Inc. vol-
ume 30. URL: https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper. pdf|

99

https://www.sciencedirect.com/science/article/pii/S1361841518306133
https://www.sciencedirect.com/science/article/pii/S1361841518306133
https://www.sciencedirect.com/science/article/pii/S1361841518306133
http://dx.doi.org/https://doi.org/10.1016/j.media.2019.01.012
http://dx.doi.org/https://doi.org/10.1016/j.media.2019.01.012
https://doi.org/10.5281/zenodo.4009388
http://dx.doi.org/10.5281/zenodo.4009388
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/JBHI.2020.3024188
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Vento, M., & Percannella, G. (Eds.) (2019). Computer Analysis of Im-
ages and Patterns - 18th International Conference, CAIP 2019, Salerno,
Ttaly, September 3-5, 2019, Proceedings, Part II volume 11679 of Lecture
Notes in Computer Science. Springer. URL: https://doi.org/10.1007/
978-3-030-29891-3. d0i;10.1007/978-3-030-29891-3.

Wang, Q., Bi, S., Sun, M., Wang, Y., Wang, D., & Yang, S. (2019). Deep
learning approach to peripheral leukocyte recognition. PLOS ONE, 1/, 1-18.
URL: https://doi.org/10.1371/journal.pone.0218808. doii10.1371/

journal .pone.0218808.

Willemink, M. J., Koszek, W. A., Hardell, C., Wu, J., Fleischmann, D., Harvey,
H., Folio, L. R., Summers, R. M., Rubin, D., & Lungren, M. P. (2020).
Preparing medical imaging data for machine learning. Radiology, (p. 192224).

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional
networks. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.),
Computer Vision — ECCV 2014 (pp. 818-833). Cham: Springer International
Publishing.

Zheng, X., Wang, Y., Wang, G., & Liu, J. (2018). Fast and robust segmentation
of white blood cell images by self-supervised learning. Micron, 107, 55-71.

Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., & Liang, J. (2018). Unet++:
A nested u-net architecture for medical image segmentation. In D. Stoyanov,
Z. Taylor, G. Carneiro, T. Syeda-Mahmood, A. Martel, L.. Maier-Hein,
J. M. R. Tavares, A. Bradley, J. P. Papa, V. Belagiannis, J. C. Nascimento,
Z. Lu, S. Conjeti, M. Moradi, H. Greenspan, & A. Madabhushi (Eds.), Deep
Learning in Medical Image Analysis and Multimodal Learning for Clinical

Decision Support (pp. 3—11). Cham: Springer International Publishing.

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable ar-
chitectures for scalable image recognition. doii10.1109/CVPR.2018.00907.

96

https://doi.org/10.1007/978-3-030-29891-3
https://doi.org/10.1007/978-3-030-29891-3
http://dx.doi.org/10.1007/978-3-030-29891-3
https://doi.org/10.1371/journal.pone.0218808
http://dx.doi.org/10.1371/journal.pone.0218808
http://dx.doi.org/10.1371/journal.pone.0218808
http://dx.doi.org/10.1109/CVPR.2018.00907

	Introduction
	Related work
	Datasets
	RV-PBS dataset
	CRV-PBS dataset
	PBC dataset
	C-PBC dataset

	Methodology
	Transfer learning
	Experiments
	Results

	Mask R-CNN pipeline
	Experiments
	Results

	Domain adaptation framework
	Experiments
	Results

	Dicsussion
	Future scope
	Computational requirements and Complexities of the models

	Conclusion
	Appendices

