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Abstract

For object segmentation in medical images, deep neu-
ral networks (DNNs) typically perform poorly on out-of-
distribution (OOD) images stemming from the large vari-
ability in image-acquisition equipment and protocols across
sites. However, we observe that the variability in the un-
derlying object-segmentation maps is far lower. Thus, we
propose a novel DNN framework to model this variability
in segmentation maps, and leverage it to revive poor seg-
mentations produced by existing DNNs on OOD images.
Our DNN framework (i) learns the principal modes of vari-
ation in a class of segmentation maps, (ii) models each seg-
mentation map using a low-dimensional mixture-of-modes
latent representation on a simplex, (iii) enables sampling-
free variational learning and uncertainty estimation, and
(iv) trains using small in-distribution image sets. In special
cases when OOD-image segmentations are extremely poor,
we propose a human-in-the-loop method needing minus-
cule human intervention. Results using 6 publicly-available
datasets and 8 existing DNN segmenters show the benefits
of our framework in OOD-image object segmentation.

1. Introduction

Deep neural networks (DNNs) for segmenting anatomi-
cal objects in medical images face severe challenges in out-
of-distribution (OOD) images [9, 33] (unavailable during
DNN training) that can arise from the large variability in
image-acquisition equipment and protocols across clinical
sites. Noting that the variability in object geometry is lower,
we propose a novel DNN framework to model this variabil-
ity in a class of segmentation maps by learning the princi-
pal modes of variation, and leverage it to revive poor seg-
mentations produced by existing DNNs on OOD images;
“segmentation map” is an image where pixel values are the
probability of that pixel belonging to the object of interest.

Generative DNNs model distributions on latent vari-
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ables, e.g., many probabilistic and Bayesian versions of
principal component analysis (PCA) [6, 31], their nonlin-
ear extensions [5], and variational autoencoders (VAEs)
[18]. Early versions of PCA were restricted to multivariate-
Gaussian based models, and nonlinear extensions required
hand-crafting features or kernels. In contrast, VAEs lever-
age DNNs to learn a rich set of features from data, but re-
quire expensive Monte-Carlo sampling during learning and
inference. A very recent kernel-based PCA method uses
hierarchical/“deep” modeling [32], but avoids DNN mod-
els, avoids variational models, and focuses on industrial
process fault detection (an application much different from
ours). While some early works use a Bayesian interpreta-
tion of the softmax layer to model uncertainty in segmenta-
tion [15], we leverage it to propose (i) a novel variational
DNN model enabling sampling-free learning and inference,
and (ii) a novel efficient method to improve poor segmenta-
tions by optimizing plausible ones.

This paper focuses on improving poor segmentations of
OOD images. A class of DNN methods [11, 14, 20] use
anatomical information through loss terms designed on seg-
mentations in the domain of interest, but they are inappli-
cable to our problem setting dealing with OOD data that is
unavailable during training. Some other methods aim to im-
prove poor segmentations using statistical models of shape
(distance transforms or pointsets), but need expert annota-
tions on OOD data during inference [13] or computation-
ally intractable alignment between OOD images and shape
models [28]; our framework avoids shape spaces. Recent
methods leverage convexity-based models [10, 23, 24, 34]
to improve segmentation of OOD images. Some recent
methods [22] aim to simulate millions of anatomically-
feasible segmentations and then find the one closest to a
poor segmentation, but acknowledge that simulation can
be unreliable without expert judgement and the inference-
time search is expensive; our framework uses its learned
model to efficiently optimize a feasible segmentation. Last,
in cases of extremely poor OOD-image segmentations, if
the object has star-convex [29] geometry, we propose to
improve segmentations by obtaining sparse segmentation
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maps with minuscule human input and then “projecting”
them onto our learned principal modes.

2. Related Work
Existing DNNs for medical image segmentation include

several variants of UNet [27] employing attention gates [16,
21, 25], residual connections [16, 37], and squeeze-and-
excitation blocks and spatial pyramidal pooling [7, 16].
BASNet [26] uses hybrid-loss and residual refinement mod-
ules for saliency prediction and refinement, aiming to pro-
duce sharper and clearer boundaries. DSTransUNet [19]
uses self-attention as in vision transformers [8], and hierar-
chical swin transformers in its U-shaped architecture to ex-
tract coarse and fine-grained features of different semantic
classes. SegAN [36] uses an adversarial critic network with
multiscale L1 losses, and captures long-range and short-
range spatial relationships through local and global fea-
tures. MedSegDiff [35] uses denoising diffusion probabilis-
tic models [12] with dynamic conditional encoding for step-
wise attention and feature-frequency parsing to reduce ef-
fects of high-frequency noise during diffusion.

A recent method [22] on statistical shape modeling uses
a constrained VAE to learn a representation on valid car-
diac shapes, then empirically sample millions of shapes and
save only those (around 4 million) that pass an anatomical-
correctness test, and replace poor segmentations by search-
ing for their nearest anatomically correct saved shape. Un-
like their strategy that requires large storage, expensive
search, and a non-trivial domain-specific method of ver-
ifying anatomical correctness, our framework avoids any
storage, quickly optimizes for the closest segmentation
map using our DNN decoder, and enables sampling-free
variational learning and uncertainty estimation. Some ap-
proaches train a DNN to restore (quality-enhance) poor
segmentation maps but, unlike our framework, their DNN
needs annotations of anatomical landmarks during infer-
ence [11] (unavailable for OOD data) and is unable to es-
timate uncertainty. A recent method [13] uses shape model-
ing in the target/alternate domain conditioned on a carefully
selected set of 9 anatomical landmarks. During inference
on cross-domain data, the landmarks are either (i) provided
by an expert, but who may be unavailable or expensive, or
(ii) detected by another DNN, but that requires training on
OOD data that is unavailable by definition. Its very recent
extension [14] replaces landmark information with edge in-
formation but also requires training on cross-domain data.

3. Proposed Method
Our VarDeepPCA framework learns a nonlinear statis-

tical model of variability in segmentation maps for a class
of objects in medical images. First, we propose VarDeep-
PCA’s variational encoder-decoder model for a distribu-
tion of segmentation maps comprising (i) a decoder mod-

eling the nonlinear principal modes of variation, and their
mixtures, in the spatial domain, (ii) a low-dimensional la-
tent variable modeling the mixture proportions underlying
a given segmentation map, (iii) an encoder mapping a given
segmentation map to its latent representation, and (iv) vari-
ational/distribution modeling using sampling-free learning.
Second, we propose a way to use VarDeepPCA to improve
poor segmentations, given by existing DNNs, for OOD im-
ages either automatically or using little human intervention.

Image X models an acquired medical image compris-
ing an object of interest. Image Y models an associated
expert segmentation map (binary or fuzzy); our framework
can easily handle multiple expert segmentation maps Y for
a single X . Image W models the associated unknown true
segmentation map, which may differ from each associated
Y . Φ(·) models an existing DNN segmenter mapping im-
ages X to their object segmentations Φ(X). X̃ models an
OOD image for which the segmentation Z̃ := Φ(X̃) is of
poor quality (Figure 1(A)). During training Φ(·), OOD im-
ages and their expert segmentations are both unavailable.

3.1. DNN-based PCA Model on Segmentation Maps
Using a Latent Representation on a Simplex

The VarDeepPCA framework can employ generic
encoder-decoder DNN architectures to model a distribution
on segmentation maps Y for a class of objects (Figure 1(B)).
We assume the distribution comprises K principal (non-
linear) modes of variation, where K is small (this paper
chooses K := 8), which are indicated by a K-length one-
hot random vector C, where the index of the non-zero com-
ponent indicates a specific mode of variation. Let Ik be a
K-length one-hot vector with a value of 1 at index k. A typ-
ical segmentation map will be well-represented by a mixture
of these K modes. We design VarDeepPCA to encode each
segmentation Y using a latent-vector representation of K
probabilities of Y being close to each of the K modes of
variation, i.e., the vector L := [P (C = I1|Y ), · · · , P (C =
IK |Y )]. Because L is a K-dimensional vector with positive
values summing to 1, it lies on a (K − 1)-dimensional sim-
plex in RK . To get the latent representation L, VarDeep-
PCA’s encoder E(·; θE), parameterized by θE , first maps
input Y to a K-dimensional segmentation-feature vector
S := E(Y ; θE). Subsequently, we propose to map S to the
vector L using the softmax function because this softmax
mapping implicitly performs variational/distribution mod-
eling (shown in Section 3.2) and enables sampling-free vari-
ational learning (shown in Section 3.3). VarDeepPCA’s de-
coderD(·; θD), parameterized by θD, maps latent represen-
tations L to output segmentation maps W := D(L; θD).

3.2. Variational Interpretation of Softmax Mapping

VarDeepPCA reinterprets the softmax function, underly-
ing the mapping L := Softmax(S), using Bayesian princi-
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Figure 1. VarDeepPCA on Segmentation Maps with Sampling-Free Variational Learning. (A) Existing DNN-based object segmenters
typically perform poorly on OOD images. (B) Our VarDeepPCA models and learns principal modes of variation of segmentation maps
and a related latent representation on a simplex (Section 3.1) through a softmax mapping (Section 3.2). (C) Our Bayesian interpretation of
the softmax endows a variational model with (i) closed-form marginalization enabling sampling-free variational learning (Section 3.3) and
(ii) enabling per-pixel uncertainty estimates (Section 3.4). (D) Automatically reviving poor segmentations (Section 3.5(A)), produced by
existing DNNs on OOD images, by “projecting” segmentation maps onto the VarDeepPCA’s model of principal modes of variation.

ples to shed light on the underlying variational/distribution
modeling on the simplex in RK (Figure 1(C)). We
model P (C|S) as the posterior-predictive distribution aris-
ing from a Categorial-distribution likelihood P (C|·), on
the modes of variation indicated by C, coupled with a
Dirichlet-distribution (conjugate) prior P (·|S). Let the ran-
dom vector A have its components Ak := exp(Sk) > 0, for
all 1 ≤ k ≤ K, such that A parameterizes a Dirichlet dis-
tribution Dir(B;A) of a hidden random vector B residing
on the (K − 1)-dimensional simplex. Because the mapping
from Y to S to A is deterministic, the following equivalence
between posterior-predictive distributions holds: P (C|Y =
y) ≡ P (C|S = E(y; θE)) ≡ P (C|A = exp(E(y; θE))).
Consider a categorical distribution Cat(C;B) on one-hot
vectors C, parameterized by the hidden random vector B
that is sampled from its conjugate distribution Dir(B;A).
Then, the posterior-predictive distribution becomes

P (C|A) =

∫
b

P (C|b)P (b|A)db =

∫
b

Cat(C; b)Dir(b;A)db

=

∫
b

(∏
k

(bk)
Ck

)(∏
k

(bk)
Ak−1

η(A)

)
db (1)

=

∫
b

∏
k

(bk)
Ck+Ak−1

η(A)
db =

η(A+ C)

η(A)
, (2)

where the normalizing constant for the Dirichlet distribution
is η(F ) :=

∏
k Γ(Fk)/Γ(

∑
k Fk), where Γ(·) is the well-

known Gamma function. This leads to

P (C|A) =
Γ(

∑
k Ak)∏

k(Γ(Ak))

∏
k(Γ(Ak + Ck))

Γ(
∑

k Ak + Ck)
. (3)

Considering a specific instance of c := Ik, and using the
property Γ(g+1) := gΓ(g) for gamma functions, simplifies
the posterior-predictive distribution as

P (C = Ik|A) =
Ak∑K
k=1 Ak

=
exp(Sk)∑K
k=1 exp(Sk)

= Lk (4)

that is the k-th component of the vector L = Softmax(S).
Furthermore, the expected value EP (C|Y )[C] indeed equals
L that we designed as the low-dimensional latent repre-
sentation for Y . So, while the softmax mapping from
S to the latent representation L is deterministic, the soft-
max implicitly (i) subsumes variational modeling by mod-
eling distributions P (B| exp(S)) ≡ P (B|A) and P (C|B),
(ii) then marginalizes out the random variable B lever-
aging Bayesian inference to produce the analytically ex-
act posterior-predictive distribution P (C|S) in closed form,
and (iii) finally takes the expectation of C under the
posterior-predictive distribution to give L = EP (C|S)[C] in
closed form; the closed-form expressions enable sampling-
free variational learning as described next in Section 3.3.

3.3. Sampling-Free Variational Learning using
Closed-Form Marginalization with Softmax

Let the training set of N segmentation maps be
{Yn}Nn=1. For input Y , VarDeepPCA models a distribution
P (C|Y ) representing a mixture of the modes of variation
underlying Y . We use Bayesian decision theory to formu-
late the variational learning to maximize, over parameters
θ, the expected utility (under P (Y )) of the decoder’s out-
put that is associated with its input as the expected value
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of C under P (C|Y ). To measure the quality of any decoder
output W , we choose the utility function to be the soft Dice-
similarity-coefficient (sDSC) between W and the reference
Y . So VarDeepPCA’s variational-learning formulation is

max
θE ,θD

EP (Y )[sDSC(Y,D(L = EP (C|Y ;θE)[C]; θD))] (5)

≡ max
θE ,θD

N∑
n=1

sDSC(Yn,D(Softmax(E(Yn; θ
E); θD))) (6)

where Section 3.2 derived the exact analytical value of (the
expected value) L in closed-form using the softmax func-
tion. Thus, the VarDeepPCA learning formulation, despite
involving a latent distribution P (C|Y ) (and distributions
P (C|B), P (B|Y )) eliminates Monte-Carlo sampling, and
the associated reparameterization, that becomes inevitable
in typical variational DNNs (e.g., VAEs) because of the in-
tractability of their underlying integration (Figure 1(C)).

3.4. Getting Output Segmentation with Uncertainty

For an input segmentation map Z, VarDeepPCA’s inter-
nal low-dimensional representations (e.g., S and L in RK)
are designed to model Z using only the top K modes of
variation, while filtering out the remaining variation (e.g.,
arising from segmentation errors and discretization errors
in Z). Also, for input Z, the variational model underly-
ing VarDeepPCA outputs a latent distribution P (C|Z) :=
P (C|B)P (B|Z) where P (B|Z = z) is equivalent to
P (B|A = exp(E(z; θE))). Indeed, VarDeepPCA can sam-
ple c ∼ P (C|Z) as follows: S ← E(Z; θE), A ← exp(S),
b ∼ Dir(B;A), c ∼ Cat(C; b). For a trained VarDeepPCA
(as per Section 3.3), for input Z, we propose to (i) map
the mean of P (C|Z) through the decoder to infer the out-
put segmentation W , i.e., W := D(EP (C|Z)[C]; θD) where
EP (C|Z;θE)[C] = Softmax(E(Z; θE)) = L, and (ii) map the
variance of P (C|Z) through the decoder to get the variance
image V in the spatial domain (described next), and then
take per-pixel square-root values in V to get the associated
uncertainty image U (Figure 1(C)). For the i-th pixel in V ,
we evaluate the variance Vi using (a) the variances P (Ck|Z)
of each component Ck; for categorial P (C|Z), these have
the closed-form Lk(1 − Lk); and (b) the Jacobian of the
decoder mapping D(·; θD) evaluated at L := EP (C|Z)[C]:

Vi :=

K∑
k=1

(
∂Di(L)

∂Lk

∣∣∣∣
L=Softmax(E(Z))

)2

VarP (C|Z)[Ck],

where Di(L) denotes the i-th pixel value in D(L).

3.5. Improving DNN Segmenters on OOD Images

We leverage the learned VarDeepPCA model in two dif-
ferent ways to revive poor segmentation maps Z̃ produced
by existing DNNs Φ(·) on OOD images X̃ .

(A) Reviving Poor Segmentations Automatically. We
propose a novel two-stage algorithm (Figure 1(D)). First,
we pass Z̃ through the encoder-decoder VarDeepPCA to
filter out from Z̃ the non-principal components of the seg-
mentation map. This produces the filtered segmentation
map Z := D(Softmax(E(Z̃; θE)); θD). Second, we ex-
plicitly “project” Z onto the learned space of principal
modes of variation by (i) fixing Z as the output reference,
(ii) optimizing the segmentation-feature vector S∗ ∈ RK as
S∗ := argmaxS sDSC(Z,D(Softmax(S); θD)), using gra-
dient descent, and (iii) defining the improved/revived seg-
mentation W ∗ := D(Softmax(S∗); θD).

(B) Reviving Very Poor Segmentations: Human in
the Loop. Very poor segmentation maps Z̃ cannot be re-
vived well by the automatic strategy described earlier. In
this case, we propose a novel two-stage algorithm (Fig-
ure 2) that requires very little human input and works well
for objects defined by star-convex [29] boundaries, e.g., the
myocardium is defined by its outer boundary (epicardium)
and the inner boundary (endocardium) both of which are
star-convex. First, making a reasonable assumption that
the field of view in the OOD image X̃ is similar to that
in the training images X or Y , we ask the intervening hu-
man to roughly estimate the object centroid in X̃ , then cen-
ter a polar coordinate system at that location, partition the
polar domain into F sectors, and ask the human to indi-
cate the correct segmentation of X̃ in f ≪ F sectors by
simply drawing two arcs corresponding to the outer and in-
ner boundaries of the object; this segmentation Z̊ is incom-
plete and extremely sparse. Second, we explicitly “project”
Z̊ onto the learned space of principal modes of variation
in a way similar to that described earlier for automatic re-
vival, but with one difference: to adapt to the sparsity of
the reference segmentation map Z̊, we replace sDSC by
Partial-sDSC that is computed using only the pixels ly-
ing within the f sectors that the human segmented, i.e.,

Figure 2. Human-in-the-Loop Approach. Reviving poor seg-
mentations, produced by existing DNNs on OOD images, by us-
ing minuscule human intervention to obtain extremely sparse seg-
mentation maps and “projecting” them onto the VarDeepPCA’s
model of principal modes of variation (Section 3.5(B)). For image
on right: region in polar domain without any human annotation
(gray); human-annotated arcs (red) in 4 (out of 72) sectors de-
fine the sparse segmentation (black ≡ background, white ≡ fore-
ground); partial-sDSC is computed only in non-gray region.
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      Datasets →
DNN Methods ↓

CAP ACDC (OOD) ACMRI (OOD) MAGRABI ORIGA (OOD) G1020 (OOD)
Dice HD95 ASD Dice HD95 ASD Dice HD95 ASD Dice HD95 ASD Dice HD95 ASD Dice HD95 ASD

UNet 90.1
(8.0)

5.4
(8.8)

1.5 
(1.3)

60.6 
(10.8)

41 
(16)

11.6 
(5.3)

71.3 
(11.7)

26 
(17)

6.9 
(3.8)

85.9 
(6.9)

9.9
(11.1)

4.1
(3.5)

82.1
(6.4)

16.0
(14.0)

5.5
(3.0)

78.9
(9.2)

15.6
(17)

6.2
(5.2)

UNet+VarDeepPCA
(Ours)

89.2 
(4.2)

3.7 
(1.2)

1.5 
(0.4)

79.7 
(5.8)

5.2 
(1.5)

2.1 
(0.5)

79.8 
(7.5)

6.0 
(1.3)

2.5 
(0.5)

91.1
(3.6)

5.6
(1.8)

2.2
(0.8)

89.6
(3.2)

6.5
(1.7)

2.3
(0.6)

88.9
(3.2)

6.5
(1.5)

2.6
(0.7)

AttnUNet 93.0 
(3.8)

2.9 
(3.8)

1.0 
(0.5)

74.8 
(7.8)

14 
(10.5)

4.1 
(2.0)

78.1 
(9.0)

7.9 
(5.4)

2.7 
(1.0)

92.7
(3.9)

5.6
(5.5)

2.0
(1.4)

89.7
(3.9)

7.4
(7.1)

2.5
(1.5)

89.2
(5.0)

7.9
(9.2)

2.9
(2.6)

AttnUNet+VarDeepPCA 
(Ours)

90.2 
(3.0)

3.4 
(1.0)

1.4 
(0.4)

81.5 
(5.0)

5.2 
(1.2)

2.2 
(0.5)

82.3 
(5.1)

5.6 
(1.2)

2.3 
(0.5)

93.6
(2.2)

4.4
(1.5)

1.6
(0.5)

90.4
(3.1)

5.9
(1.5)

2.1
(0.6)

91.4
(2.3)

5.5
(1.4)

2.0
(0.5)

ResUNet++ 91.8 
(5.8)

3.3 
(2.9)

1.1 
(0.7)

62.9 
(14.7)

31 
(17)

7.4 
(4.3)

73.9 
(11.8)

11.8 
(9.2)

3.2 
(1.7)

93.3
(2.4)

4.9
(3.4)

1.8
(0.9)

90.7
(3.0)

5.9
(1.4)

2.1
(0.5)

90.7
(3.3)

11.7
(18)

3.8
(4.3)

ResUNet+++VarDeepPCA 
(Ours)

89.6 
(3.5)

3.6 
(1.0)

1.4 
(0.4)

76.4 
(10.3)

5.8 
(1.9)

2.2 
(0.7)

79.3 
(7.7)

6.1 
(1.5)

2.5 
(0.5)

93.9
(2.1)

4.2
(1.5)

1.5
(0.5)

90.9
(3.2)

5.8
(1.5)

2.0
(0.6)

92.1
(2.1)

5.3
(1.4)

1.9
(0.5)

DeepLabV3+ 92.6 
(3.2)

2.7 
(1.3)

1.0 
(0.4)

75.7 
(8.8)

10.0 
(5.5)

4.0 
(2.2)

72.8 
(10.8)

12 
(10)

4.3 
(2.9)

91.6
(3.1)

5.8
(2.1)

2.2
(0.8)

87.6
(4.3)

6.6
(1.7)

2.7
(0.8)

89.6
(3.1)

8.4
(7.6)

2.8
(1.5)

DeepLabV3++VarDeepPCA
(Ours)

89.7 
(3.2)

3.6 
(1.0)

1.4 
(0.4)

80.3 
(6.0)

5.5 
(1.1)

2.5 
(0.7)

77.8 
(6.4)

6.5 
(1.3)

2.9 
(0.7)

92.0
(2.9)

5.2
(1.8)

2.0
(0.7)

88.3
(4.3)

5.8
(1.6)

2.6
(0.8)

90.4
(2.7)

6.1
(1.4)

2.3
(0.6)

BASNet 79.9 
(6.8)

6.8 
(1.8)

3.0 
(0.9)

74.6 
(8.8)

7.5 
(1.8)

3.4 
(1.0)

75.8 
(9.2)

7.6 
(1.2)

3.6 
(1.3)

93.9
(2.2)

4.4
(1.6)

1.6
(0.6)

91.4
(2.7)

5.3
(1.5)

1.9
(0.5)

92.5
(2.2)

5.3
(4.0)

1.9
(1.2)

BASNet+VarDeepPCA 
(Ours)

81.0 
(7.2)

6.3 
(1.7)

2.8 
(0.9)

75.9 
(8.6)

6.7 
(1.6)

3.2 
(1.0)

76.7 
(8.7)

7.0 
(1.7)

3.5 
(1.2)

93.9
(2.1)

4.3
(1.6)

1.5
(0.5)

92.0
(3.0)

5.0
(1.6)

1.8
(0.5)

92.7
(2.2)

4.9
(1.5)

1.8
(0.5)

DSTransUNet 92.5 
(3.8)

2.9 
(1.7)

1.0 
(0.6)

68.7 
(9.8)

15.5 
(6.5)

5.3 
(1.9)

80.1 
(6.2)

9.3 
(6.7)

3.4 
(1.6)

93.9
(3.0)

4.9
(7.0)

1.8
(2.1)

90.3
(3.1)

5.6
(4.3)

2.3
(1.2)

89.8
(4.8)

18.4
(22)

5.6
(6.2)

DSTransUNet+VarDeepPCA 
(Ours)

88.7 
(3.4)

4.3 
(1.4)

1.7 
(0.4)

75.0 
(7.2)

7.3 
(1.4)

3.5 
(0.9)

83.0 
(4.8)

5.9 
(1.2)

2.5 
(0.6)

94.5
(1.8)

3.7
(1.3)

1.4
(0.4)

91.7
(3.1)

4.3
(1.2)

1.8
(0.6)

92.9
(2.0)

4.7
(1.5)

1.7
(0.5)

SegAN 93.7 
(3.4)
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Figure 3. Results. Myocardium datasets: CAP used for training (in-distribution data), and ACDC and A-CMRI as OOD data. Retina
datasets: Magrabi used for training (in-distribution), and ORIGA and G1020 as OOD data. Numbers indicate means (standard deviations).
Colors indicate improvements that are statistically significant (t-test p-value < 0.05) over other corresponding DNNs (ours or baseline).

S∗ := argmaxS Partial-sDSC(Z̊,D(Softmax(S); θD)).

4. Results and Discussion
Training Details. We use 6 publicly-available datasets

and 8 existing DNN segmenters. We pre-process the image
data by cropping/padding and resampling to 256×256 pix-
els. VarDeepPCA’s architecture uses an encoder E(·; θE)
having a sequence of convolution and max-pooling layers
(number of channels reduces by 2× each time from 256
to 8; image size reduces by 2× each time from 256×256
to 1×1) until it produces a 1×1×8 feature vector S ∈
R8, and a corresponding decoder D(·; θD) using transpose-
convolutions for upsampling. We use batch normalization
after each convolution layer and Adam [17] optimization.

Baselines. We compare with 8 existing DNN seg-
menters (denoted Φ(·) earlier) spanning several kinds
of architectures and formulations/losses over the last
decade, i.e., UNet [27], AttnUNet [21], ResUNet++ [16],
DeepLabV3+ [7], BASNet [26] (uses boundary-aware

loss), SegAN [36] (uses discriminative learning), DSTran-
sUNet [19] (uses dual swin transformers), and Med-
SegDiff [35] (uses diffusion-process modeling). We train
all methods on one dataset (in each domain: cardiac, retina)
and then test them on two OOD datasets from that domain
comprising images from different sources. For a fair anal-
ysis, we compare each baseline with its version augmented
with our VarDeepPCA (Section 3.5); VarDeepPCA relies
on the same training data as each baseline; number of pa-
rameters in our VarDeepPCA model is only 35% of that in
the smallest baseline model (ResUNet++) and 1% of that
in the largest baseline model (DSTransUNet). Performance
measurement uses (i) DSC and (ii) the distribution of inter-
boundary (predicted versus ground-truth) distances (as done
for Hausdorff distance), in pixel units, in terms of the 95-th
percentile (termed HD95) and the average (termed ASD).

Datasets. We use 3 short-axis cardiac MRI datasets:
CAP [30], ACDC [4], A-CMRI [2]. We use CAP for train-
ing, validation (to tune free parameters), and in-distribution
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(a1) AttnUNet:3.6,6.0 (a2) DeepLabV3+:5.4,22 (a3) BASNet:4.1,5.1 (a4) MedSegDiff:6.0,6.0 (a5) Uncertainty for (a4)

(b1) AttnUNet:3.2,3.0 (b2) DeepLabV3+:4.0,9.5 (b3) BASNet:6.4,8.0 (b4) MedSegDiff:6.4,7.1 (b5) Uncertainty for (b4)

(c1) AttnUNet:4.0,9.3 (c2) BASNet:4.0,7.1 (c3) DSTransUNet:4.8,5.8 (c4) MedSegDiff:5.0,6.4 (c5) Uncertainty for (c4)

(d1) AttnUNet:4.9,5.1 (d2) BASNet:5.0,6.1 (d3) DSTransUNet:4.2,24 (d4) MedSegDiff:5.8,23 (d5) Uncertainty for (d4)
Figure 4. Results (Myocardium): Automatic Revival on 4 best-performing baselines on OOD data. (a1)–(a4) and (b1)–(b4) from
ACDC dataset. (c1)–(c4) and (d1)–(d4) from ACMRI dataset. (a5)–(d5) Uncertainty maps produced using VarDeepPCA on top of the
associated baselines in (a4)–(d4). Color scheme: Baseline; Baseline+VarDeepPCA (Ours); Ground Truth. Numbers indicate HD95 values.

testing; we use ACDC and A-CMRI for OOD testing. We
use 3 retinal-image datasets: Magrabi [1], ORIGA [38],
G1020 [3]. We use Magrabi for training, validation, and
in-distribution testing; we use ORIGA and G1020 for OOD
testing. For training all methods, to mimic a typical clini-
cal scenario, we choose a small training set with 150 medi-
cal images along with their segmentation maps that are rep-
resentative of the underlying distribution of segmentation
maps. We use a separate validation set of 50 medical im-
ages (to tune hyperparameters of existing DNNs), and use
the remaining images as in-distribution and OOD test sets.

Human-in-the-Loop Approach. We partition the polar
domain into F := 72 sectors (each spanning 5 degrees)

and get annotations of object boundaries (inner and outer)
from a human intervener (Section 3.5) in f := 4 sectors
randomly and uniformly spread across 360 degrees, needing
only 5.6% of the effort needed for full object segmentation.

4.1. Results: Quantitative and Qualitative

Existing DNNs Segment OOD Images Poorly. Fig-
ure 3 demonstrates that all 8 baselines perform very well
on in-distribution images, but quite poorly on OOD images;
this exemplifies the major challenge faced by typical current
DNN segmenters on applications across medical-imaging
datasets. The poor segmentations on OOD images by ex-
isting DNNs often show gross errors, implausible object
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(a1) AttnUNet:4.1,4.5 (a2) DeepLabV3+:3.6,5.4 (a3) BASNet:2.8,3.1 (a4) MedSegDiff:5.0,6.0 (a5) Uncertainty for (a4)

(b1) AttnUNet:5.0,5.7 (b2) DeepLabV3+:2.8,3.2 (b3) BASNet:4.1,4.1 (b4) MedSegDiff:4.1,5.0 (b5) Uncertainty for (b4)

(c1) BASNet:2.8,3.6 (c2) DSTransUNet:2.2,3.0 (c3) ResUNet++:4.0,4.1 (c4) DeepLabV3+:3.0,3.2 (c5) Uncertainty for (c4)

(d1) BASNet:3.6,5.0 (d2) DSTansUNet:3.0,5.0 (d3) ResUNet++:3.6,4.0 (d4) DeepLabV3+:4.2,5.8 (d5) Uncertainty for (d4)
Figure 5. Results (Retina): Automatic Revival on 4 best-performing baselines on OOD data. (a1)–(a4) and (b1)–(b4) from G1020
dataset. (c1)–(c4) and (d1)–(d4) from ORIGA dataset. (a5)–(d5) Uncertainty maps produced using VarDeepPCA on top of the associated
baselines in (a4)–(d4). Color scheme: Baseline; Baseline+VarDeepPCA (Ours); Ground Truth. The numbers indicate HD95 values.

shapes, and incorrect number of connected components in
the object (Figure 4, Figure 5, Figure 6, Figure 7).

Automatic Revival of Poor Segmentations. On in-
distribution images, the values of HD95 and ASD are small,
in absolute terms, for all methods, and these results typ-
ically exhibit virtually imperceptible differences from the
ground truth. On in-distribution images, VarDeepPCA-
augmented versions (e.g., UNet+VarDeepPCA) perform at
par with the underlying baselines (e.g., UNet): a bit worse
for myocardium and a bit better for the retina (Figure 3).
On OOD images, VarDeepPCA-augmented versions con-
sistently outperform the underlying baselines statistically
significantly, leading to huge improvements in all perfor-

mance measures for, both, the myocardium and the retina,
quantitatively (Figure 3) and qualitatively (Figure 4, Fig-
ure 5). Moreover, almost every VarDeepPCA-augmented
version outperforms almost all the baselines on OOD im-
ages (Figure 3), e.g., ResUNet+++VarDeepPCA (with only
6M parameters) performs almost-always significantly bet-
ter than DSTransUNet (171M parameters). In this way,
the principal variability in segmentation maps learned by
VarDeepPCA is able to filter-out errors in segmentations
and improve poor segmentation maps by “projecting” them
onto the principles modes of variation (Figure 4, Figure 5).

Uncertainty Images Associated with VarDeepPCA
Segmentations. Unlike baselines, the variational modeling
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(a1) AttnUNet:4.0,30 (a2) DeepLabV3+:4.0,22

(a3) AttnUNet:4.1,40 (a4) DSTransUNet:5.7,36
Figure 6. Results (Myocardium): Human-in-the-Loop Re-
vival on 2 best-performing baselines on OOD data from (a1)-
(a2) ACDC and (a3)-(a4) ACMRI datasets. Color scheme: Base-
line; Human-in-the-Loop Annotations; Baseline+VarDeepPCA
(Ours); Ground Truth. The numbers indicate HD95 values.

underlying VarDeepPCA enables per-pixel uncertainty esti-
mates. The uncertainty is high in object regions where the
statistical model of segmentation-map variations indicates a
larger variability. For example, compared to the optic-disc
boundary (Figure 5(a5)–(d5)), higher uncertainty around
the optic-cup boundary stems from a lower reliability in
human/expert annotaters there because of lower contrast in
the retinal image around the optic-cup boundary. Similarly,
compared to the uncertainty in the retinal images, the uncer-
tainty is lower around the myocardium (Figure 4(a5)–(d5))
because of (i) possibly lower anatomically variability and
(ii) better contrast in cardiac MRI around the myocardium
increasing the reliability of human/expert segmentations.

Human-in-the-Loop Revival of Very Poor Segmenta-
tions. Even with only 5.6% of the object segmented by
the human annotater, the statistical model of segmentation-
map variability learned by VarDeepPCA completes the
extremely-sparse human segmentation very accurately (Fig-
ure 6, Figure 7). Indeed, VarDeepPCA is unaffected by the
OOD variations in medical images (stemming from varia-
tions in image-acquisition equipment and protocols across
sites) because it solely relies on segmentation maps for
learning and analysis. Figure 3 clearly shows that our
human-in-the-loop approach performs (i) always better than
all other baselines, (ii) and almost-always better than the
VarDeepPCA-augmented version.

(a1) AttnUNet:5.1,84.1 (a2) DeepLabV3+:6.0,43.2

(a3) BASNet:3.3,8.1 (a4) DeepLabV3+:2.1,10.6
Figure 7. Results (Retina): Human-in-the-Loop Revival on 2
best performing baselines on OOD data from (a1)-(a2) G1020
and (a3)-(a4) ORIGA datasets. Color scheme: Baseline; Human-
in-the-Loop Annotations; Baseline+VarDeepPCA (Ours); Ground
Truth. The numbers indicate HD95 values.

5. Conclusion

We propose to revive poor segmentations produced by
existing DNNs on OOD images using the novel VarDeep-
PCA framework that learns the principal modes of varia-
tion in segmentation maps; VarDeepPCA trains on a small
in-distribution dataset, without using any OOD data. For
each segmentation map Y , VarDeepPCA designs its latent
representation L = EP (C|Y )[C] to model the mixture prob-
abilities of each mode of variation being associated with
the segmentation map. VarDeepPCA produces L using a
softmax mapping, and shows that this softmax mapping
implicitly performs variational modeling, enables computa-
tionally efficient sampling-free variational learning and in-
ference. VarDeepPCA has a lightweight architecture (Re-
sUnet+++VarDeepPCA with 6M parameters outperforms
DSTransUNet with 171M parameters), is modality inde-
pendent, leverages generic encoder-decoder archiectures,
and produce uncertainty estimates. In cases of extremely
poor OOD-image segmentations, if the object exhibits star-
convex geometry, VarDeepPCA revives the segmentations
by using minuscule human intervention to obtain extremely
sparse segmentation maps and “projecting” them onto the
VarDeepPCA’s model of principal modes of variation. Re-
sults using 6 publicly-available datasets and 8 existing DNN
segmenters show that VarDeepPCA outperforms existing
DNNs in OOD-image object segmentation.
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