CS772: Deep Learning for Natural
Language Processing (DL-NLP)

Convolutional Neural Networks

Jimut Bahan Pal
C-MInDS, IIT Bombay
23" September, 2025

Instructor: Prof. Pushpak Bhattacharyya

Contents

* Images, matrices, and ambiguity of images

* A bit of history about CNNs

e Convolutional Neural Networks (CNNs)

 Key-aspect of CNNs

 Padding, Pooling, Stride, Receptive field of kernel/filter, different types of convolution
 Example of convolution and parameter calculation

 Parameter and feature calculation of a CNN (using Pytorch code example)
* Features learnt by CNNs

* More CNN architectures — VGGNet, GooglLeNet, ResNet

* Transfer Learning in CNNs

* Demo - ResUNet++ for Multiclass image segmentation

Images, Matrices and Ambiguity of images

Images — in Computer Vision

2D representation of visual
information composed of
pixels, each containing a

Digital images are matrices of

discrete data (photograph,
video frames etc.)

Natural images are normally 3-

channel (RGB color) or 1-
channel gray-scale.

Can be represented by 8-bit
unsigned integer, (i.e., 28
values); numpy.uint8

3D
tensor H

Starts from O and ends at 255;
hence, intensities are between

0-255

https://version2024.iitb.ac.in/en/gallery

shape of image =

[174
[175
[176
[179
[182
[185
[187
[188
[187

—

D

173
174
176
179
183
186
188
188
187

10x10 pixels from top left

172
173
175
179
183
187
189
188
187

171
172
175
179
183
187
189
188
188

(1409, 2835)
first 10x10 pixels from top left =
[[174 173 171 170 170 172 173 174 177 178]

171
172
175
178
182
186
188
188
188

172
173
175
177
181
184
186
188
189

173
174
175
177
180
182
184
188
189

174
174
175
176
179
181
182
188
189

178
178
179
180
181
181
182
181
183

179]
179]
180]
181]
182]
182]
183]
183]
184]1]

4

https://www.researchgate.net/figure/RGB-image-divided-into-three-color-channels fig2 373653146

https://version2024.iitb.ac.in/en/gallery
https://www.researchgate.net/figure/RGB-image-divided-into-three-color-channels_fig2_373653146

Images — in Computer Vision

e When dealing with features in Deep Neural Networks (DNNs) and
Convolutional Neural Networks (CNNs) we can have ~2264 (torch.float64);
~2/32 (torch.float32 default) and ~2716 (torch.float16) values depending on
the precision required for computations.

* Images are often normalized between 0.0-1.0 intensities before passing into
DNN models to stabilize training (avoiding large values after ReLU activations)

= A = s e mnr N - i B - - =
M e T T : D e
st :

shape of image =
(2088, 4640, 3)
first 5x5 pixels
from top left =
[[[224 198 128]

[226
[230
[226
[225

[[230
[225
[226
[223
[226

[[232
[227
[230
[228
[232

[[224
[223
[227
[227
[228

[[222
[225
[228
[228
[228

200
204
200
199

204
199
200
197
200

207
202
205
203
206

199
198
202
201
202

197
200
202
202

202

130]
134]
130]
129]1]

134]
129]
1301
1271
130]]

137]
132]
135]
133]
13611

129]
128]
132]
131]
132]]

1271
1301
1321
1321
132111

https://stackoverflow.com/questions/62111708/what-is-the-significance-of-normalization-of-data-before-feeding-it-to-a-ml-dl-m

https://stackoverflow.com/questions/62111708/what-is-the-significance-of-normalization-of-data-before-feeding-it-to-a-ml-dl-m

Un-realted: Images can sometimes be ambiguous

<{ Albums shiba or marshmallow Select

{ Albums kitten or ice cream Select

{ Albums chihuahua or muffin Select || € Albums puppy or bagel Select

e "Kanizsa Triangle” — these spatially
separate fragments give the
impression of illusory contours (also
known as modal completion) of a
triangle.

* French caricature of Napoleon llI,
1870, rotated turns into a donkey

http://16385.courses.cs .cmu.edu https://en.wikipedia.org/wiki/Ambiguous image

/ BADINGUET ALLANT A LA GUERRE!!

6
BADINGUET REVENANT DE LA GUERRE!

http://16385.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Ambiguous_image

A bit of history about CNNSs

A bit of history — Stimulus Response

J. Physiol. (1968), 195, pp. 215-243

With 3 plates and 14 text-figures
Printed in Great Britain

215

RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE
OF MONKEY STRIATE CORTEX

 Hubel & Wiesel studied the Hubel & Weisel

responses of a cat to

orientation of light stimulus by topographical mapping
placing electrode in it’s brain.

* Key Finding: cells are organized

as a hierarchy of feature

detectors, with higher level

features responding to

patterns of activation in lower c
level cells.
. D
i g b featural hierarchy
Recording electrode —— high | |

Visual area hyFer-complex @ IgNievel g

of brain cells g
complex cells mid level ¢

m\ N _ “ simplecells :D
0 Stimulus . fﬁ : NG G

https://www.cns.nyu.edu/~tony/vns/readings/hubel-wiesel-1968.pdf

https://dannagurari.colorado.edu/course/neural-networks-and-deep-learning-spring-2025/

By D. H. HUBEL a~xp T. N. WIESEL

From the Department of Physiology, Harvard Medical School,

Boston, Mass., U.S.A.

S

—

S

_—

S

e

S

—_—

Pl

e

AL

-l‘—--[—#-—-—

S
W

https://www.cns.nyu.edu/~tony/vns/readings/hubel-wiesel-1968.pdf
https://dannagurari.colorado.edu/course/neural-networks-and-deep-learning-spring-2025/

{ o First Second Third
A b It Of h IStO ry TI m eI I n e MM _____________________ = Galgeite w “hge 1 _A]‘ Golden Age
XOR Problem lead to i | oo SV 2012
the fIrSt AI Wlnter' Artificial Turinglg?6 Aa}g?;\m Prz(gIZm Neocognitronlg‘86 19‘95 — |
* Popularity of SVMs G e | 157 e i ey Wt | S
caused the second Al] | ‘] I]] ‘

winter.

agle

McCulloch-Pitts

Al winters were usually
triggered by inflated

.P‘ u:*

Rosenblatt Widrow-Hoff

Minsky-Papert

expectations and xz S
dlsz_;\ppomtmg resglts, i uuuuuu N o
which led to funding 58

cuts and fading interest.

e 2018 —Turing Award in Computer Science: Bengio, Hinton
and LeCun ushered in Major Breakthroughs in Al

e 2024 — Nobel Prize in Physics: John Hopfield and Hinton -
for foundational discoveries and inventions that enable
machine learning with artificial neural networks

X X X X

https://medium.com/@Impo/a-brief-history-of-ai-with-deep-learning-26f7948bc87b
https://awards.acm.org/about/2018-turing
https://www.nobelprize.org/prizes/physics/2024/hinton/facts/

Rumelhart, Hinton et al.

L R S |

LY ELCLL 8

LeCun Hinton-Ruslan Krizhevsky et al. Vaswani

Thhas

R U AR
U AL

Yoshua Bengio

Geoffrey Hinton Yahn LeCun

https://medium.com/@lmpo/a-brief-history-of-ai-with-deep-learning-26f7948bc87b
https://awards.acm.org/about/2018-turing
https://www.nobelprize.org/prizes/physics/2024/hinton/facts/

A bit of history — the hype of Deep Learning after AlexNet

e The first DNN architecture which was trained on 2 NVIDIA GTX
580 GPUs, having 3GB VRAM each for 5-6 days; in C++/CUDA.

e Used RelLU activation, Convolutional layers, dropout (p=0.5) as
regularization, and pooling layers with parameter ~60 million.

 Won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC’12) with error rate of 15.3%, the second was 26.2%,
was the first DNN method to be used in the challenge.

e Had 11x11 filters; all winner methods used DNNs after this.

[— - 3\:’: \ — w INAN s

o PR e e T
- 192 192 128 2048 Jo4s \dense Med U aal Ao o s b e St N S U
‘ N 13\3:}3\ 13 \ 13 A
5 Cay i SR S
224 s | 3|} N BEENG Q 3|‘ I , R
e Q*-" 5[\ 13 dense’| [dense 16.4
e 3|\ 1000
192 192 128 Max' 2048 3048 11—7 | 19 layers I | 22 layers |
224\lfStride Max 28 Max pooling
Uof 4 pooling pooling 7.3 6.7
3 48 [
https://media.wired.com/photos/5c1002bdbbcfae2d7b3dea28/3:2/w 2240,c limit/hinton1-FINAL.jpg shallow | | 8 layers ‘ | 8 layers | AN A 3.57
https://papers.nips.cc/paper files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html AN A ‘ |_|
https://www.cse.iitm.ac.in/~miteshk/CS6910.html| 10

ILSVRC’10 ILSVRC’11 ILSVRC’12 ILSVRC’13 ILSVRC’14 ILSVRC’14 ILSVRC’15

https://www.image-net.org/ AlexNet ZFNet VGG GoogleNet ResNet

https://media.wired.com/photos/5c1002bdbbcfae2d7b3dea28/3:2/w_2240,c_limit/hinton1-FINAL.jpg
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://www.cse.iitm.ac.in/~miteshk/CS6910.html
https://www.image-net.org/

There were Yann LeCun’s letter to CVPR organizer about 2012 submission:
. . (Paper ratings: “Definitely Reject,” “Borderline”, “Weakly Reject”)
resistance to this

”Revo|ution” “... I was very sure that this paper was going to get good reviews because: 1) it has two simple
and generally applicable ideas for segmentation ("purity tree" and "optimal cover"); 2) it uses
° Rejected paper no hand-crafted features (it's all learned all the way through. Incredibly, this was seen as a
uses CNN as a step negative point by the reviewers!); 3) it beats all published results on 3 standard datasets for
in feature scene parsing; 4) it's an order of magnitude faster than the competing methods.

extraction for

parsing/
segmenting scene

. .
The],cl rst CNN “The injustice of any award is that it has to pick a small number of winners. But the winners
architecture are merely the visible part of an iceberg and wouldn't come to the surface without the
created was much-larger submerged part that supports it...

LeNet-5 which was

trained on CPU for

If that is not enough to get good reviews, | just don't know what is.

Yann LeCun’s Facebook post on March 28, 2019:

| am very thankful to all my mentors, collaborators, postdocs and students over the years. To a
large extent, it is their work that the Turing Award rewards... | have been very fortunate to

handwritten work with incredibly talented people over the years...
character
recognition. Mentors include Maurice Milgram & Frangoise Soulié-Fogelman, my PhD advisors, Geoff

Hinton with whom | did my postdoc, Larry Jackel and Rich Howard who hired me at Bell Labs,
and Lawrence Rabiner my lab director at AT&T Labs...”

https://www.reddit.com/r/MachinelLearning/comments/41q701/yann lecuns letter to cvpr chair after bad/ https://arxiv.org/pdf/1202.2160

https://www.reddit.com/r/MachineLearning/comments/4lq701/yann_lecuns_letter_to_cvpr_chair_after_bad/
https://arxiv.org/pdf/1202.2160

Deep Learning replaces Image Processing tasks using CNNs

 Many tasks which were done by traditional image
processing techniques are being replaced by Deep
Learning which uses CNNs.

2. Image Formation

 Though these tasks face many challenges that are
inherent in images.

Scale variation Deformatlon

Occlusion

Viewpoint variation

8. Motion

5. Segmentation

9. Stitching 10. Computational Photography 11. Stereo

12. 3D Shape 13. Image-based Rendering 14; Recognition

http://mit6874.github.io https://dellaert.github.io/21F-x476/

http://mit6874.github.io/
https://dellaert.github.io/21F-x476/

Technical aspects of CNNs

What is convolution?

* Convolution is the area under the curve f(7) weighted by g(t — 1)
* In continuous case, the convolution of two functions f and g can be written as
” +00
(f*2)0) =] f()gt-1)dz
* Terminology:
* The function f is referred to as the input
* The function g is referred to as the kernel/filter
 The output (f * g)(t) is referred to as the feature map
* Two examples of convolution over different function f (the input) are given below:
Y — PSSR, S Sp— R B 1=~ e SR S— S ; R e]
f(x) (1] P, f(x) |
: ; : : : att-x) Y| ISR STUUTUUTS FOTPUTUN! DURRUROO U R e
] S SRR IERR A e A el GV Ol) SR NN SOSURURY NUSUSURE SOOI SOOI rr-rrererse — !
: nz-
0-11’5 1l 0%5 0 Ufﬁ 1l 1?5 2l 2?5 3l ‘ 2| -1?5 : 0.5 l; 0.5 : 1?5 ;
&t &t

Pushpak Bhattacharyya, DL-NLP slides, IITB 2023; Dripta Mj, DL-1 slides, RKMVERI 2020; https://en.wikipedia.org/wiki/Convolution

https://en.wikipedia.org/wiki/Convolution

What is Convolutional Neural Networks (CNNs)?

CNN: Neural Networks using convolution in place of general matrix multiplication in at least
one layers, i.e., neural network for grid like topology; the filter/kernel component is learnt.

The name CNN indicate that the mathematical operation convolution is used

In ML, we work on discrete set of data points, for data sampled at regular intervals (say at
integer values), the convolution can be defined as

(f *g)ln Z J (m)g(n—m)

In many problems, the input dataset is usually a multidimensional array (tensor)

In practice, the inputs and the kernel are finite dimensional, hence their values are taken to
be 0 outside a finite set of points; hence can be implemented as a finite summation.

Convolution can be implemented in more than one dimension simultaneously, for example
using a 2D kernel k, using an input image x

g(i,j) = (x * ZZXZ} (i —a,j—PB)

15

Dripta Mj, ML-1 slides RKMVERI 2020

Example of Convolution using a kernel and image in 2D

* Element wise
multiplication,
just like dot-
product of
vectors.

o A*Q42F1+7*2+
1*4+4*2+5% 1+
8*4+0*0+6*3
=91

Dripta Mj, ML-1 slides RKMVERI 2020

—
o
4//2 9
1 - 13
NN
g 0 52
/ 3//
s 1 40
— 9
2 7
/

42 |7
14 |5
8|06
%
2 (1|2

1
0|3

Part of Image -
'j/
' /
/
/
/
/
/

Kernel/filter

16

Example of Convolution using a kernel and image in 2D

e Element wise

ltiplication, RN
just like dot. =273
product of //3 1 45 |2
vectors. = , 7 //
¢ 2¥247*1+3*2+ | 4 — [45 9
4%455%242% 14 //5 }/ 0161 91
i (WEls o m P
=48] =
80 52 ul
| 3// //
] 9//
//
4 0 |3

17
Dripta Mj, ML-1 slides RKMVERI 2020

Example of Convolution using a kernel and image in 2D

Element wise

Itiplication, 2 |1
et 731
product of //3 1 502 |9
vectors. = 2 7 // .
7¥2+43*1+1%2+ |4 — o |9
%4427 2407 14 //5 2~ 6|13 o1
6*4+1%0+3*3 | q | & 1 3 | —
=85 —— 0 6 /f * » ///
/
= 13, 1|2 -
— 9 -
//
4 10 |3

18
Dripta Mj, ML-1 slides RKMVERI 2020

Example of Convolution using a kernel and image in 2D

Element wise

s [alals
product of ///3//1/ 8 0 |6
vectors. T J///
1*2+4*145%2+ | 4 }/2 9 51 |3 43
8*4+0*2+6% 1+ — | 5 //
5*4+1*0+3*3 [}/ 1 3
- 83 o 6 /? Xk =)
8 ~
. /p//’;f 21 |2 '
5 e | 4/
2=
4 0 3

19
Dripta Mj, ML-1 slides RKMVERI 2020

L&

Example of Convolution using a kernel and image in 2D

Element wise

multiplication, - 4 |5 12
just like dot- /
product of ///3//]/'/ 0O 6 1
vectors. _— > }/
4%245%1+2%2+ | 4 //2 9 1(3 |5
0*4+6*2+1*1+ [115 =
1*4+3*0+5*3 | q | =g 3
=49 — 0 6// *
And so on... }/;i/a//

29

> 7 4 1

//

4 10 3

20

Dripta Mj, ML-1 slides RKMVERI 2020

Example of Convolution using a kernel and image in 2D

Element wise

multiplication, 6 |1
just like dot- /T
duct of —

e 73 [3]5]2
6%2+1%1+3%2+ | 4 }//{ 9 / 914 |0
3*4+5%2+2* 1+ | 4 Z//
27z;+40+o3 }/61} '

g 0~ 52

2

//

4 |1 03

Dripta Mj, ML-1 slides RKMVERI 2020

Key Aspects of CNNs

Qv
@A -
v
(D=
/ e Y,
Traditional Neural Networks with Fully connected CNNs with kernels

layers
* Sparse connectivity

* Traditional Neural Network layers have a separate parameter for interaction b/w each
i/p and o/p unit; In CNN, kernel preserves the 2D spatial structure of input images.

* In CNN, kernels are used. Which have size smaller than that of the inputs, hence the
number of parameters are much less — lesser chance of overfitting

* Fewer operations are required to compute the outputs — less training time of models

22
Dripta Mj, ML-1 slides RKMVERI 2020

Key Aspects of CNNs

Traditional Neural Networks with Fully connected CNNs with kernels
layers
* Sharing of parameters:

* In traditional neural networks, a parameter is used only once while evaluating the o/p
of a unit.

* In CNN, the same set of parameters are used for all the inputs

* Do not need to learn separate parameters for every input. Only need to learn the same
set of parameters for all the inputs

Dripta Mj, ML-1 slides RKMVERI 2020

23

Key Aspects of CNNs — parameters count example O
 Let’s consider an 1-D example, we have 4 weights, (i.e., red, ./
blue, yellow and green values in the filter)

* |Ifinstead we use a fully-connected layer, we would use 9x4 =
36 (9 blue for first layer, 4 magenta for second layer) .
connections.

24

 The bias of a particular layer is the number of neurons in that
layer, we don’t consider input as a layer.

 Hence the weights to be learned for this example is 9x4+4 = 36 >
weights+4 bias = 40 parameters
O >

* Ifinstead we use kernel/filter using CNN, we have 4 weights+1
bias = 5 parameters, hence the number of parameters is
significantly reduced.

* |Inimages, input sizes are high, i.e., (256x256x3 = 196608 pixels,
which can lead to million of parameters in a couple of layers
using very few fully-connected neurons)

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Key Aspects of CNNs

Dripta Mj, ML-1 slides RKMVERI 2020

Equivariance to translation — if
the location of a certain feature is
changed, then the output of the
convolution also changes
accordingly

Feature - pattern, characteristic,
or attribute extracted from the
input data, such as edges,
textures, corners, or shapes which
helps in pattern recognition.

Same features occur at multiple
locations in the input space

The o/p of the convolution
indicate whether different
features occur in the input space

Operation Kernel w Image result g(x,y)
O 0 O
Identity 0O 1 O
0 0
0 -1 0
—1 4 -1
0 -1 0
Ridge or edge detection
=i =1 =i
—1 8 —1
-1 -1 -1
0 -1 0
Sharpen —1 5 -1
0 -1 0
Box blur

(normalized)

https://en.wikipedia.org/wiki/Kernel (image processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Key Aspects of CNNs

Dripta Mj, ML-1 slides RKMVERI 2020

For example, an edge detecting filter will
generate a 2D map of the occurrence of
such an edge in the i/p

Convolution is not equivariant to
transformations such as scaling and
rotations.

The higher the layer (i.e., closer the layer
to the output layer), the more complex the
feature becomes

Initial layers detects edges, color etc. from
raw pixels

These features are used in the higher
layers to detect more complex shapes

Again these features are then used to
detect more higher level features
belonging to a class etc.

https://en.wikipedia.org/wiki/Kernel (image processing)

Operation Kernel w Image result g(x,y)
1 2 1
Gaussian blur 3 x 3 1
(approximation) E 2 4
roximation
1 2 1
1 4 6 4 1]
] 4 16 24 16 4
Gaussian blur 5 x 5 1
o — |6 24 36 24 6
(approximation) 256
4 16 24 16 4
1 4 6 4 1
Unsharp masking 5 x 5 1 4 6 4 1
Based on Gaussian blur] 4 16 24 16 4
with amount as 1 and %6 6 24 —476 24 6
threshold as 0 4 16 24 16 4
(with no image mask) L 1 4 6 4 1

26

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Padding

Why do we need Padding?

Risk of losing information from the
edges of i/p with no padding

Without padding in DNNs, the
inputs to the later layers will be
significantly reduced in size

Used to preserve image/feature
sizes

Can also be used to make the
feature volume of the next layer of
a desired size/dimension

Dripta Mj, ML-1 slides RKMVERI 2020

27

Pooling

* Replaces the output with a summary statistic of the Single depth slice

nearby outputs — reduces computational/memory dTaT1 2]
requirements, requires no additional parameters to be BRI e o Poo vin22fies NS
* Motivation: pooling assists in making a representation 1 | 2 NS

approximately invariant to small translations of the input :
y

* Pooling is useful as in many cases we are concerned

about the presence of some feature rather than their et
exact location pool TeXtat
* Example: -

- Max pooling: Computes the maximum output within
a rectangular neighbourhood

- Average pooling: Average of a rectangular l I
neighbourhood e

- L? norm of a rectangular neighbourhood 224 downsampling =

224 -

Dripta Mj, ML-1 slides RKMVERI 2020; https://cs231n.github.io/convolutional-networks/#pool

https://cs231n.github.io/convolutional-networks/

2
4

Computing

the

maximum

o/pin a
3x3

Max Pooling

neighbour
hood

oM | N |
N 1| O
N | O

Computing

the

maximum

o/pin a

3x3
neighbour

Max Pooling
hood

Max Pooling

5
a4

—— |
611 3
/
3
9

PR TR

| o) SRS

N onlo @ o
o\) @) =
AL AN

Computing

the

maximum

o/pin a

3x3
neighbour

hood

31

Stride

 Some positions of the kernel can be skipped to reduce
the computational cost.

 Samples are taken every (say) s grid points in a particular
direction

AR

e Heres=2isused

VAN N A

 sisreferred to as the stride of the downsampled
convolution

* The more the stride, the lower the dimension of the
feature in the next block; i.e., more compression of
features in the feature space.

\ N\

AN

* |tis possible to define a separate stride s for each
direction of motion

VAN N A

(3)

Dripta Mj, ML-1 slides RKMVERI 2020

Stride
* (1) —we can use strides in Convolution
operations to reduce the size of feature map.

 (2)—we can have different dimensions for
kernels for generating different sizes of feature
maps.

* (3)—we can have activations A (") like
ReLU(:) /Sigmoid(-) etc., to generate output
from feature maps

/ INPUT

> [

(1)

VAN

Dripta Mj, ML-1 slides RKMVERI 2020

» L
l=(lj;D)
(E1+0)

(2) (CI*+3)

Receptive field of a kernel/filter

* Say, we have an input of 5x5 pixel, which
is applied to a kernel of size 3x3, the o/p
will be of size 3x3.
* Again, if we apply the same kernel on the m— —p D
result, the output will be of size 1x1. 3x3 kernel 3x3 kernel

 The total number of parameters =
(3x3+1)*2 =20 5x5 i/p

* Similarly, if an input of size 5x5 pixel is
convolved with a kernel of size 5x5, we
get a output of size 1x1 directly.

 The total number of parameters =
e Hence, we get the same receptive field by 5x5 kernel
applying two 3x3 kernels in series as

applying one 5x5 kernel, which leads to

more parameters 5x5i/p

34

Different types of convolution

Padding=0, Stride=1 Padding=1, Stride=1 Padding=0, Stride=2 Padding=1, Stride=2

* Here, a kernel size of 3x3 is used to demonstrate the different types of convolution
operations

* Blue maps are inputs and cyan maps are outputs

https://github.com/vdumoulin/conys arithmetic
https://arxiv.org/pdf/1603.07285

https://github.com/vdumoulin/conv_arithmetic
https://arxiv.org/pdf/1603.07285

Different types of convolution

Padding=1, Stride=2, Padding=0, Stride=2, Padding=2, Stride=1,

* Blue maps are inputs and cyan maps are outputs

36
https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

Different types of convolution

Input Kernel

Ol1 Transposed 411

Conv

213 (Stride 1) 213

Output

(0N o) 411 0l4]|1
=100 + 213|+|8]|2 + 12(3(=|8|16| 6
416 69 411219

Padding=0, Stride=2 Padding=1, Stride=2

e Dilated convolution
* Deconvolution is also called as transposed convolution

* An operation in CNN that increases the spatial dimensions (height and width) of its input
feature maps effectively upsampling the data

https://github.com/vdumoulin/conv_arithmetic https://www.geeksforgeeks.org/machine-learning/what-is-transposed-convolutional-layer/

https://github.com/vdumoulin/conv_arithmetic
https://www.geeksforgeeks.org/machine-learning/what-is-transposed-convolutional-layer/

Parameters and feature dimension
calculations in a CNN

Examples of convolutions and parameter calculations

Here, we will consider the dimensions of feature maps as input and calculate the number of
parameters for a particular conv layer

Let us consider that the features are present in a tensor represented by BXxCxHXW where
B=batch size; C=number of channels (channel first order); H=height of the tensor; W=width of

the tensor

Formula to calculate the output of the feature map, given input W; XH;X(; the Conv layer
need 4 hyper-parameters (i) number of filters = K; (ii) the filter size = F, (iii) the stride =S (iv)
the zero padding P

This produces an o/p of W, XH, XK (though | don’t recommend memorizing the formula)

H,—F+2P
S

_ W, —F+2P

Wz— S +1andH2= +1

W 39

https://cs231n.stanford.edu/

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

1x10x1x3072

1x1x1x3072 /

 Thisis a bit non-standard example, where the kernel is of bigger size than the input feature
volume; taken from Stanford lectures.

1x10x1x1

 Let’s consider an input of size 1x1x1x3072 which is applied to a kernel of size 1x10x1x3072
* Here the feature dimensions are measured in BXCxHxW

 Feature of size 1x1x1x3072 is multiplied by each of the channel of 1x10x1x3072 to get the
output dimension of 1x10x1x1

* Since there are 10 output channel, bias = 10 (each channel of the output contributes to a
bias of 1)

* The number of parameters of the kernel/conv operation = 1x10x1x3072+10 = 30730 .

https://cs231n.stanford.edu/

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

J

——
1x3x5x5

1x3x32x32 1x1x28x28 -

e Here, stride =1, H=32; W=32; kernel size = 3x5x5

 Hence each of the 3x5x5 block of kernel convolves with the 3x5x5 block of the input volume
to produce output feature

 After the convolution is done, the resultant is of size 1x1x28x28

 The convolution kernel has a bias of 1; also the output channel is 1, for which a bias of 1 is
contributed to the whole operation

* The number of parameters of the kernel = 3x5x5+1 =76

https://cs231n.stanford.edu/

41

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

so0 6 as bias 1x6x28x28

6x3x5x5

f .

1x3x32x32 \ Y J 6 output feature maps
6 filters of conv layer

e Here, stride =1, H=32; W=32; kernel size = 3x5x5 (channel first kernel) and 6 filters in total
* Hence there are 6 outputs of dimension 28x28; the final output dimension=1x6x28x28
 The total parameters: 6x3x5x5+6= 456

e Since there are 6 filters, there are 6 biases

* The number of filters will give the number of channels of output

https://cs231n.stanford.edu/

42

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

6 as bias
6X3x5x5

AN

6 filters of conv layer Ix6X28%28

2X3x32x32

Y
2 output feature maps
Here, stride = 1, H=32; W=32; kernel size = 3x5x5 (channel first kernel) and 6 filters in total

Hence there are 2 outputs of dimension 6x28x28; the final output dimension=2x6x28x28
The total parameters: 6x3x5x5+6= 456
Since there are 6 filters, there are 6 biases

This example shows when there is a batched input, there is a batched output as well

https://cs231n.stanford.edu/

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

6x3x5x5 -
———

10x6x5x5
—

1x3x32x32 1x6x28%28 1x10x24x24

 Asample of convnet is provided, here we see that we apply repeated convolution to make
the feature sizes as smaller and thicker (by channels) as possible; 0 padding and stride of 1

* The number of kernels should match the output of the channel of the feature map, hence
we use different number of kernels to determine the thickness (of channel) of feature map

* The number of parameters for these two conv operations:
* 6x3x5x5+6+10x6x5x5+10 = 1966

* First conv layer has 6 filters hence bias of 6; similarly for 2" conv layer, it has 10 filters;
hence a bias of 10

44
https://cs231n.stanford.edu/

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

32x64x1x1
1X64X56X56 | / , 32x56x56
Y
32 filters

* Here, we apply 1x1 convolution of 64 /

channel; we apply 32 of them all together
* The number of parameters for these two 56 L?J,%SH};S 56

conv operations: (each filter has size

e 32x64+32 =2080 1x1x64, and performs a
* Convolution of Cx1x1 transforms an input 56 ﬁfgﬂ[ﬂg”s'm' @o!

volume of 1xCxHxW to 1xHxW, hence we y 2 °6

can apply any number of such convolution
to shrink or expand the input volume.

https://cs231n.stanford.edu/

45

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

— —
ddine = Kernel =
padding = 1 3x3x3x3;
1x3x7X7 Stride =2
Padding =1

applied; 1x3x9x9

* Let’s assume we have an input of size 1x3x7x7;

what are the feature volumes and parameters of
the whole CNN?

* Since out-channels = 3; hence the output channel
of the feature volume=3;

* First we add a padding of 1 (on all side of the
image) then we perform convolution using a
stride of 2

* Number of params for this layer = 3x3x3x3+3=84

Final dimension = 1x3x4x4

class Example_ffcnn(nn.Module):
def __init__ (self):
super().__init_ ()
self.convl = nn.Conv2d(in_channels=3,

out_channels=3, kernel_size=3,
stride=2, padding=1)

self.conv2 = nn.Conv2d(in_channels=3,

out_channels=3, kernel_size=3,
stride=1, padding=3)

self.bn2d = nn.BatchNorm2d(3)
self.maxpool = nn.MaxPool2d(2)
self.flatten = torch.nn.Flatten()

self.fcl

= nn.Linear(48, 10)

self.bnld = nn.BatchNormld(10)

self.out

= nn.Linear(10, 1)

self.sigmoid = nn.Sigmoid()

def
=-self.
self.
self.
self.
self.
self.
self.
self.
self.

f
X
X
X
X
X
X
X
X
X
return X

o | 1 1 1 Y | | I | I ||

e

orward(self, x):

convl(x) ,

conv2(x) 2

bn2d(x)

maxpool(x)

flatten(x)

fcl(x)

bnld(x)

out(x)

sigmoid(x) 46

Examples of convolutions and parameter calculations

class Example_ffcnn(nn.Module):

Stride=1; kernel def __init__ (self):

. _ super().__init_ ()
paddmg =3 Size = 3x3x3 self.convl = nn.Conv2d(in_channels=3,
out_channels=3,kernel_size=3,
1x3x4x4 stride=2, padding=1)
Padding -3 applied; self.conv2 = nn.Conv2d(in_channels=3,

out_channels=3, kernel_size=3,
stride=1, padding=3)

self.bn2d = nn.BatchNorm2d(3)

self.maxpool = nn.MaxPool2d(2)

self.flatten = torch.nn.Flatten()

self.fcl = nn.Linear(48, 10)

self.bnld = nn.BatchNormld(10)

1x3x10x10

* Since out-channels = 3; hence the
output channel of the feature

VOIUme=3,' self.out = nn.Linear(10, 1)
- self.sigmoid = nn.Sigmoid()
* First we add a padding of 3 (on all ~ Finalvolume= @ @ @ o

1x3x8x8

self.convl(x)
~self.conv2(x)
self.bn2d(x)
self.maxpool(x)
self.flatten(x)
self.fcl(x)
self.bnld(x)
self.out(x)
self.sigmoid(x)
return x

side of the image) then we
perform convolution using stride
1

* Number of params for this layer =
3x3x3x3+3=84

X X X X X X X X X
LI | I | | | | B

47

Examples of convolutions and parameter calculations

—
Batchnorm2D

1x3x8x8 Ix3x8x8

 Batchnorm2D independently normalizes,
scales, and shifts each channel of the input
feature map

* Hence, the number of parameters is the
number of channel x 2; here it is 3 for
gamma and 3 for beta as it has 2 parameters
per channel.

e The dimension of the feature volume doesn’t
change in this case.

* Hence the total number of parameters for
this layer is 6

class Example_ffcnn(nn.Module):

def

def

__init_ (self):

super().__init_ ()

self.convl = nn.Conv2d(in_channels=3,
out_channels=3,kernel_size=3,
stride=2, padding=1)

self.conv2 = nn.Conv2d(in_channels=3,
out_channels=3, kernel_size=3,
stride=1, padding=3)

self.bn2d = nn.BatchNorm2d(3)

self.maxpool = nn.MaxPool2d(2)

self.flatten = torch.nn.Flatten()

self.fcl = nn.Linear(48, 10)

self.bnld = nn.BatchNormld(10)

self.out = nn.Linear(10, 1)

self.sigmoid = nn.Sigmoid()

forward(self, x):
self.convl(x)
self.conv2(x)
self.bn2d(x)|
self.maxpool(x)
self.flatten(x)
self.fcl(x)
self.bnld(x)
self.out(x)
self.sigmoid(x)
return x

X X X X X X X X X
LI | | | 1 | | A | I ||

48

Examples of convolutions and parameter calculations

class Example_ffcnn(nn.Module):
def __init_ (self):
super().__init__ ()
self.convl = nn.Conv2d(in_channels=3,

—
Maxpool2D

2X2

Ix3x8x8

1x3x4x4

* Maxpool doesn’t have any extra

parameters

 Maxpool just collects the most prominent
features and downsamples the feature

block

* Hence the total number of parameters for

this layer =0

out_channels=3,kernel_size=3,
stride=2, padding=1)

self.conv2 = nn.Conv2d(in_channels=3,

out_channels=3, kernel_size=3,
stride=1, padding=3)

self.bn2d = nn.BatchNorm2d(3)
self.maxpool = nn.MaxPool2d(2)

self.flatten

torch.nn.Flatten()

self.fcl = nn.Linear(48, 10)
self.bnld = nn.BatchNormld(10)

self.out

= nn.Linear(10, 1)

self.sigmoid = nn.Sigmoid()

def forward(self, x):

self

X X X X X X X X X
o mwn mnn

return x

= self.
self.
.bn2d(x)
self.
self.
self.
self.
self.
self.

convl(x)
conv2(x)

maxpool(x)
flatten(x)
fcl(x)
bnld(x)
out(x)

sigmoid(x) "

Examples of convolutions and parameter calculations

class Example_ffcnn(nn.Module):
def __init_ (self):

super().__init_ ()
— self.convl = nn.Conv2d(in_channels=3,
Flatten out_channels=3,kernel_size=3,
1x3x4x4 1x48 stride=2, padding=1)

self.conv2 = nn.Conv2d(in_channels=3,
out_channels=3, kernel_size=3,
stride=1, padding=3)

° Flatten doesn’t have any extra self.bn2d = nn.BatchNorm2d(3)
self.maxpool = nn.MaxPool2d(2)
parameters self.flatten = torch.nn.Flatten()
. . self.fcl = nn.Linear(48, 10)
* Flatten just flats the block to make it self.bnld = nn.BatchNormid(10)
compatible as an input to a fully self.out = nn.Linear(10, 1)

self.sigmoid = nn.Sigmoid()

connected layer
def forward(self, x):

self.convl(x)

self.conv2(x)

self.bn2d(x)

self.maxpool(x)

self.flatten(x)

self.fcl(x)

self.bnld(x)

self.out(x)

self.sigmoid(x) 50

return X

* Hence the total number of parameters
for this layer =0

X X X X X X X X X
oo wonononn

Examples of convolutions and parameter calculations

—
Flatten

2x2
1x48

e Structure of fully connected layers are just
like complete bipartite graph
 The layer to which it is getting connected has def

number of nodes as the bias

* Hence the number of parameters =
48x10+10=490

supe
self

self.

self.
self.
self.
self.
self.

self

self.

class Example_ffcnn(nn.Module):
def __init_ (self):

r().__init__ ()

.convl = nn.Conv2d(in_channels=3,
out_channels=3,kernel_size=3,
stride=2, padding=1)

conv2 = nn.Conv2d(in_channels=3,
out_channels=3, kernel_size=3,
stride=1, padding=3)

bn2d = nn.BatchNorm2d(3)

maxpool = nn.MaxPool2d(2)

flatten = torch.nn.Flatten()

fcl = nn.Linear(48, 10)

bnld = nn.BatchNorm1d(10)

.out = nn.Linear(10, 1)

sigmoid = nn.Sigmoid()

forward(self, x):

X X X X X X X X X
o wnmwnonnm

retu

self.convl(x)

self.conv2(x)

self.bn2d(x)

self.maxpool(x)

self.flatten(x)

self.fcl(x)

self.bnld(x)

self.out(x)

self.sigmoid(x) 51
rn x

Examples of convolutions and parameter calculations

class Example_ffcnn(nn.Module):

@ @)
® —m8M O

Batchnorm 1D

O O
10 10

 Batchnorm1D independently normalizes,
scales, and shifts each neuron/node of the
input feature map

* There are 2 parameters for each of the
neurons, hence this layer has 10x2=20
parameters

def

def

__init__ (self):

super().__init__ ()

self.convl = nn.Conv2d(in_channels=3,
out_channels=3,kernel_size=3,
stride=2, padding=1)

self.conv2 = nn.Conv2d(in_channels=3,
out_channels=3, kernel_size=3,
stride=1, padding=3)

self.bn2d = nn.BatchNorm2d(3)

self.maxpool = nn.MaxPool2d(2)

self.flatten = torch.nn.Flatten()

self.fcl = nn.Linear(48, 10)

self.bnld = nn.BatchNormld(10)

self.out = nn.Linear(10, 1)

self.sigmoid = nn.Sigmoid()

forward(self, x):
self.convl(x)
self.conv2(x)
self.bn2d(x)
self.maxpool(x)
self.flatten(x)
self.fcl(x)
self.bnld(x)
self.out(x) <
self.sigmoid(x; 5o
return Xx

X X X X X X X X X
{1 | | | 1 | A | A 1 B |

Examples of convolutions and parameter calculations

(:) class Example_ffcnn(nn.Module):
<:> def __init__ (self):
— super()__init_()
FLﬂ|y self.convl = nn.Conv2d(in_channels=3,
<:> out_channels=3,kernel_size=3,
connected stride=2, padding=1)
10 |ayer self.conv2 = nn.Conv2d(in_channels=3,
out_channels=3, kernel_size=3,
10 stride=1, padding=3)
self.bn2d = nn.BatchNorm2d(3)
+ Fully connectd layers have 10x1+1 = 11 R £ it R e
parameters for this |ayer self.fcl = nn.Linear(48, 10)

self.bnld = nn.BatchNormld(10)
self.out = nn.Linear(10, 1)
self.sigmoid = nn.Sigmoid()

def forward(self, x):
self.convl(x)
self.conv2(x)
self.bn2d(x)
self.maxpool(x)
self.flatten(x)
self.fcl(x)
self.bnld(x)
self.out(x) .
self.sigmoid(x) L 53
return Xx

X X X X X X X X X
[| 1 | 1 | N | | B |

Examples of convolutions and parameter calculations

Sigmoid doesn’t have any parameter of

it’s own, it’s an activation function
Total parameters of this network:
84+84+6+0+0+490+20+11 = 695

This network is a very simple neural
network, can be used for binary
classification of 3-channel 7x7 images

class Example_ffcnn(nn.Module):

def __init_ (self):
super().__init__ ()
self.convl = nn.Conv2d(in_channels=3,

def

out_channels=3,kernel_size=3,
stride=2, padding=1)

self.conv2 = nn.Conv2d(in_channels=3,

out_channels=3, kernel_size=3,
stride=1, padding=3)

self.bn2d = nn.BatchNorm2d(3)
self.maxpool = nn.MaxPool2d(2)

self.flatten

torch.nn.Flatten()

self.fcl = nn.Linear(48, 10)
self.bnld = nn.BatchNormld(10)
self.out = nn.Linear(10, 1)
self.sigmoid = nn.Sigmoid()

forward(self, x):

X X X X X X X X X

self.convl(x)

self.conv2(x)

self.bn2d(x)

self.maxpool(x)

self.flatten(x)

self.fcl(x)

self.bnld(x)

self.out(x)

self.sigmoid(x)| 54

return x

Features learnt by a CNN

Feature learnt by the CNNs

* Visualization obtained by passing an input image through a trained CNN, then selectively
projecting activations back into image space using a “Deconvnet” (de-convolutional network)

Early layers detect edges, colors and low-level features

.. W”W __ =
- /’//)
-\ M ”'”Nll

https://arxiv.org/abs/1311.2901

https://arxiv.org/abs/1311.2901

Feature learnt by the CNNs

During the reverse pass, they used the stored max-pooling indices to put features back in
their original locations (un-pooling), then inverted the convolution/ReLU layers to
reconstruct which image patterns activated specific neurons

Mid-level layers captures textures/shapes

= | R 7 __./ % wi!
“,3[':;:" MICCTALL angiiL l - %v ! i
- - 4

IO LTS MG Jlg m N
ST orning & LA n 1‘ ' "_ W \

o [| . -

" . \\’L Lol "--»ﬁ,, '"e!.w"_,g oty L

ol

L
‘N

Feature learnt by the CNNs

Higher layers
(close to the o/p
layer) responds
to object parts
or entire objects

High level features

Mid level features

Low level features

https://arxiv.org/abs/1311.2901

https://arxiv.org/abs/1311.2901

Some more architectures

CNN Architectures - VGGNet

e Significantly deeper (with 16-19 layers) than
AlexNet (8 layers)with about 140 million
parameters, ~7.3% in top 5-error.

e Used smaller filter’s sizes, a stack of three 3x3 conv
(stride 1) layers (30 parameters) has the same
effective receptive field as one 7x7 conv layer (50
parameters).

e Made deeper networks with lesser parameters, the
more deeper the more non-linearity it captures.

 Used ensembles, features of deeper layers
generalizes well to other tasks, trained on 4 NVIDIA
Titan Black GPUs for 2-3 weeks

 VGGNet reinforced the notion that CNN have to
have a deep network of layers in order for the
hierarchical representation of visual data to work

Softmax

l]
l FC 1000]
[Softmax] | FC 4096 |
[FC 1000 | FC 4096 |
| FC 4096 | Pool]
l Softmax | | FC 4096] | 3x3cony,512 |
- | Pool] | 3x3conv,512 |
I FC 1000 I | 3x3conv,512 | [83x3conv,512 |
I FC 4096 l | 3x3conv,512 | | 3x3conv,512 |
I FC 4096 l | 3x3conv,512 | | Pool |
| Pool] | 3x3conv, 512 |
I Pool I | 3x3conv,512 | | 3x8conv,512 |
I 3x3 conv, 256 l | 3x38conv,512 | [3x3conv,512 |
I 3x3 conv, 384 I | 3x3conv,512 | | 8x3cony,512 |
l Pool | 1 Pool |
I Pooal I [3x3 conv, 256 | [3x3 conv, 256 |
I 3x3 conv, 384] | _3x3conv, 256 | |_3x3cony,256 |
I o0 I | Pool | | Pool |
| 3x3conv,128 | | 3x3conv,128 |
I 5x5 conv, 256 I | 3x3conv,128 | | 3x3conv,128 |
| 1ix11conv,96 | [Podl] Pool]
L_38conv,64 | [_3x3conv,64 |
I InPUt I | 3x3conv,64 | | S3x3conv,64 |
AI eXN e | Input | | Input]
t
. VGG16 VGG19
] 25.8
2
A
16.4
11.7
— | 19 layers I | 22 layers |
7.3 6.7
| shallow | | 8 layers ‘ | 8 layers | ’Z‘ [ZJ 3.57
i |]
g0

https://mit6874.github.io/ https://cs231n.stanford.edu/ https://arxiv.org/abs/1409.1556

AlexNet

ZFNet

VGG

ILSVRC’10 ILSVRC’11 ILSVRC’12 ILSVRC’13 ILSVRC’14 ILSVRC’14 ILSVRC’15
GoogleNet

ResNet

https://mit6874.github.io/
https://cs231n.stanford.edu/
https://arxiv.org/abs/1409.1556

CNN Architectures - GoogleNet A
Had no fully connected layers, ~5 million "
parameters, ~6.7% top 5 error; 22 layers. T llgjyersl (22 tayers
 Used Inception modules — good network [swetow]| [stavers | [81ayer | B e
: c R R

tOpOIOgy (network Within a network) and ILSVRC’10 ILSVRC’11 ILSVRC’12 ILSVRC’13 ILSVRC’14 ILSVRC’14 ILSVRC’15
AlexNet ZFNet VGG GoogleNet ResNet

then stack these modules on top of each

Ot h e r concat;natnon

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

* Apply parallel filter operations on input from
previous layer, multiple receptive field sizes
for conv (5x5, 3x3, 1x1), pooling operations
(3x3) and concatenate together channel- (a) Inception module, naive version

Filt

 Used “bottleneck layers” that use 1x1

3x3 convolutions 5x5 convolutions 1x1 convolutions

convolutions to reduce feature channel size. : : :
* Uses Average pool to 1x1 and then a final \ et conltors | | 353 max oolng
. o o . P —_——"SS e
Softmax layer for the final classification -
output

https://mit6874.github.io/ https://cs231n.stanford.edu/ https://arxiv.org/pdf/1409.4842 (b) InCCPtiOH module WIth dimension reductions

https://mit6874.github.io/
https://cs231n.stanford.edu/
https://arxiv.org/pdf/1409.4842

VGG-19 34-layer plain 34-layer residual

image image

CNN Architectures - ResNet

S
vl |w -
& 3 % _
8|8 el 8 3
S €2 «8 H
SUIE S R 3
slIg] ~ [2
®| |® &

conv

=
~

35 €S —

5 (B
LIS
>

Surpasses human level (5.1% error) giving a top 5 | rely ———
0 F(X) + X po:;z poc*l:lz
error of 3.6% S .
| 3x3cor : v, 256 | 33 c:w, 64
* 152-layer model, winner of classification and) N -
. . . . X I]] 3x3 conv, 256 3x3 ((;w, 64
detection competitions in ILSVRC’15 and COCO’15 SN identy =

* Showed that if we keep on stacking layers (deeper 4 i o
models), we might under-perform; not by X ==

Residual block

overfitting! rather harder to optimize \
* Problem of vanishing and exploding gradients in training DNNs. -

w
&

w
g
3
8| 8 8
29292
| 15 |2
gl 8| |8
g

& & |&
BN
BB IR

o Bl R
o o0 - o
s

8
2

34-_%4-

B

&
8
IS

gl

@
&
u
IS}

model — copying the learned layers from shallower model and

setting additional layers to identity mapping, i.e., H(x) = F(x)+x = x, if
F(x) 0; this is still one of the best architectures we have till date!

' ~ MSRA @ ILSVRC & COCO 2015 Competitions

20 20 v
\ e
* 1st places in all five main tracks
56-layer
* ImageNet Classification: “Ultra-deep” (quote Yann) 152-layer nets
i 10 o 20-layer
56-layer

ImageNet Detection: 16% better than 2nd
* ImageNet Localization: 27% better than 2nd
* COCO Detection: 11% better than 2nd 20-layer | - e
* COCO Segmentation: 12% better than 2nd o ;) 3 i ; : o : 5 3 ; 5 : saeit :*:I v] 62

fc 4096] [fc 1000

https://mit6874.github.io/ https://cs231n.stanford.edu/ https://arxiv.org/pdf/1512.03385 iter. (le4) iter. (1e4) [fi

test error (%)

[
[
[
[
[
[
[
[
[
[
[
[
|
i
[6
* Deeper model should learn at least as good as the shallow layer s Lo
[
[
[
[
[
[
[
[
[
[
|
[
[
[

training error (%)

https://mit6874.github.io/
https://cs231n.stanford.edu/
https://arxiv.org/pdf/1512.03385

Transfer Learning in CNNs

Transfer Learning in CNNs

* Training a CNN model from scratch is difficult:
* Need a large dataset to train the model
 Well-known architectures takes weeks to train using multiple GPUs

* Inspiration:
 Low-level features such as edge, corner, color-blob detectors are generic
 High-level features become more specific to the classes in the original trained dataset

e Extraction of features
* Remove the last Fully-connected layer, but treat all the other layers as fixed
* On passing a new dataset yields a features of fixed dimension for each example
 Use the resultant features to train a new classifier

* Fine-tuning CNN model
* Fine-tune the weights of the pre-trained model using back-propagation
 The whole network or some higher layers (close to the o/p) can be fine-tuned

64
Dripta Mj, ML-1 slides RKMVERI 2020

Transfer Learning in CNNs

e These scenarios
can be applied
to transfer

New dataset

characteristics
w.r.t. original dataset

Different

learning in

Transformers as l
well — which are

known for
training on

large datasets

* Models pre-

Higher level CNN features are
relevant

Fine-tuning CNN on the new
dataset can lead to overfitting

Just train a linear classifier

Final layers contain data-

specific features

Train a classifier by taking as
input the output from an
intermediate hidden layer.

trained on large
datasets can be
fine-tuned on
different down-
stream tasks

Fine-tune the CNN layers

Fine-tune the entire network,
and initializing with weights
from the pre-trained model

65

Dripta Mj, ML-1 slides RKMVERI 2020

Demo — Multiclass Image segmentation:
segmenting wild plants

Demo code: https://colab.research.google.com/drive/1Rvhg3TwiQIDBbB3QCBBuA6hayl4PmABN

Code accompanying slides:
https://colab.research.google.com/drive/154-NXcKOYnVRVbCIJMZsQFCjoDDb4 Its

66

https://colab.research.google.com/drive/1Rvhq3TwIQIDBbB3QCBBuA6hayI4PmABn
https://colab.research.google.com/drive/154-NXcKOYnVRVbCJMZsQFCjoDDb4_lts

INPUT OUTPUT

Demo — ResUNet++ for Multiclass —T1 — s sl
1 b I igmoi
° : : : Conv2D (1x1)
Image Segmentation | | L
I Conv2D (3x3) 1]
: Batch Norm. & RelU : : Addition <
 Improved ResUNet architecture for colonoscopy e L _Con2DBa)
segmentation. | R
: : .] I
* Residual unit makes deep network easy to train, and e IEEEm
skip connection helps to propagate the information e -
without degradation. | mema gy | | | [SNom.ana
P L o) . BN el
* Used Squeeze and Excitation block - each channelis i el oo
squeezed by using Global Avg. pooling for generating | o EeE—— @ |
channel-wise stats, the second step is excitation for | e || T—
° . ° 1 onv2D (3x 1 I Conv2D (3x3
active calibration. | snoma ey | | | o o, & Rl
i c°;;§2.(3’(3) i : Batt(::: ;‘;zr?nfss):?l’i)ew
* Atrous Spatial Pyramid Pooling (ASPP) - captures | [——
multi-scale information precisely by allowing i ! e
contl.rolllng field of view, and resampling features at ;I I N
multiple scales. a | |
: R Conv2!)‘(3x3) i
* Uses attention mechanism; very lightweight network, | — e]

has around 4.06 M parameters L. .' BRIDGE 67

ENCODING https://arxiv.org/pdf/1911.07067

https://arxiv.org/pdf/1911.07067

Demo — ResUNet++ for Multiclass Image Segmentation

. Train Set - First 5 Samples
e There are two classes of wild

plants, we need to divide the ,
pixel into either class-0
(background, black), class-1
(wild plant, red) or class-2
(wild plant, green)

Image 3

¢ We download the dataset; Mask 1 Mask 2 Mask 3 Mask 4 Mask 5

divide into 60-10-30 for train, . . .

validation and test split
Overlay 1 Overlay 2 Overlay 3) Overlay 4 Overlay 5

 Use Softmax as output in the
last layer of the model, input
images are 3-channel of size
256x256

* We use pytorch and google
colab for training.

Demo — ResUNet++ for Multiclass Image Segmentation

e We use Dice coefficient and Intersection over Union

predicted

(jaccard) as metrics N
: . >
 These are set operations, the classes 0,1,2; which can artla;ofd
I . overlappe
be written as one hot vectors over the pixel as [1,0,0], ., = @een ground truth
[0, 1, 0], and [O, O, 1], hence, the mask output after s

softmax will be 3x256x256, where each of the pixel will
have a probability values, we do an argmax to compute
the scores/metrics as epochs progresses

Jaccard coefficient

* We have a train, validation and test function — Urion
 The train function trains the model, along with

dumping the current statistics of the metrics for each

epoch
* Validation dumps the statistics for each epoch on

validation dataset _ |AN B
 Test epochs dumps the statistics and sample predictions Al |A U B|

for the test dataset N - 59

https://vipanchikatthula.github.io/project/jaccard-cosine-similarity/ https://i.sstatic.net/OsH4y.png

https://vipanchikatthula.github.io/project/jaccard-cosine-similarity/
https://i.sstatic.net/OsH4y.png

End of Lecture!

