
Jimut Bahan Pal
C-MInDS, IIT Bombay
23rd September, 2025

Instructor: Prof. Pushpak Bhattacharyya

Convolutional Neural Networks

CS772: Deep Learning for Natural
Language Processing (DL-NLP)

Contents
• Images, matrices, and ambiguity of images
• A bit of history about CNNs
• Convolutional Neural Networks (CNNs)
• Key-aspect of CNNs
• Padding, Pooling, Stride, Receptive field of kernel/filter, different types of convolution
• Example of convolution and parameter calculation
• Parameter and feature calculation of a CNN (using Pytorch code example)
• Features learnt by CNNs
• More CNN architectures – VGGNet, GoogLeNet, ResNet
• Transfer Learning in CNNs
• Demo – ResUNet++ for Multiclass image segmentation

2

Images, Matrices and Ambiguity of images

3

Images – in Computer Vision
• 2D representation of visual

information composed of
pixels, each containing a
specific color or intensity value

• Digital images are matrices of
discrete data (photograph,
video frames etc.)

• Natural images are normally 3-
channel (RGB color) or 1-
channel gray-scale.

• Can be represented by 8-bit
unsigned integer, (i.e., 2^8
values); numpy.uint8

• Starts from 0 and ends at 255;
hence, intensities are between
0-255

https://version2024.iitb.ac.in/en/gallery https://www.researchgate.net/figure/RGB-image-divided-into-three-color-channels_fig2_373653146

View from Main Building, IITB 1958 10x10 pixels from top left

4

https://version2024.iitb.ac.in/en/gallery
https://www.researchgate.net/figure/RGB-image-divided-into-three-color-channels_fig2_373653146

Images – in Computer Vision
• When dealing with features in Deep Neural Networks (DNNs) and

Convolutional Neural Networks (CNNs) we can have ~2^64 (torch.float64);
~2^32 (torch.float32 default) and ~2^16 (torch.float16) values depending on
the precision required for computations.

• Images are often normalized between 0.0-1.0 intensities before passing into
DNN models to stabilize training (avoiding large values after ReLU activations)

https://stackoverflow.com/questions/62111708/what-is-the-significance-of-normalization-of-data-before-feeding-it-to-a-ml-dl-m
5

https://stackoverflow.com/questions/62111708/what-is-the-significance-of-normalization-of-data-before-feeding-it-to-a-ml-dl-m

Un-realted: Images can sometimes be ambiguous

http://16385.courses.cs .cmu.edu https://en.wikipedia.org/wiki/Ambiguous_image

• "Kanizsa Triangle” – these spatially
separate fragments give the
impression of illusory contours (also
known as modal completion) of a
triangle.

• French caricature of Napoleon III,
1870, rotated turns into a donkey 6

http://16385.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Ambiguous_image

A bit of history about CNNs

7

A bit of history – Stimulus Response
• Hubel & Wiesel studied the

responses of a cat to
orientation of light stimulus by
placing electrode in it’s brain.

• Key Finding: cells are organized
as a hierarchy of feature
detectors, with higher level
features responding to
patterns of activation in lower
level cells.

https://www.cns.nyu.edu/~tony/vns/readings/hubel-wiesel-1968.pdf https://dannagurari.colorado.edu/course/neural-networks-and-deep-learning-spring-2025/
8

https://www.cns.nyu.edu/~tony/vns/readings/hubel-wiesel-1968.pdf
https://dannagurari.colorado.edu/course/neural-networks-and-deep-learning-spring-2025/

https://medium.com/@lmpo/a-brief-history-of-ai-with-deep-learning-26f7948bc87b
https://awards.acm.org/about/2018-turing
https://www.nobelprize.org/prizes/physics/2024/hinton/facts/

• XOR Problem lead to
the first AI winter.

• Popularity of SVMs
caused the second AI
winter.

• AI winters were usually
triggered by inflated
expectations and
disappointing results,
which led to funding
cuts and fading interest.

A bit of history - Timeline

• 2018 – Turing Award in Computer Science: Bengio, Hinton
and LeCun ushered in Major Breakthroughs in AI

• 2024 – Nobel Prize in Physics: John Hopfield and Hinton -
for foundational discoveries and inventions that enable
machine learning with artificial neural networks

9

https://medium.com/@lmpo/a-brief-history-of-ai-with-deep-learning-26f7948bc87b
https://awards.acm.org/about/2018-turing
https://www.nobelprize.org/prizes/physics/2024/hinton/facts/

A bit of history – the hype of Deep Learning after AlexNet

https://media.wired.com/photos/5c1002bdbbcfae2d7b3dea28/3:2/w_2240,c_limit/hinton1-FINAL.jpg
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://www.cse.iitm.ac.in/~miteshk/CS6910.html
https://www.image-net.org/

• The first DNN architecture which was trained on 2 NVIDIA GTX
580 GPUs, having 3GB VRAM each for 5-6 days; in C++/CUDA.

• Used ReLU activation, Convolutional layers, dropout (p=0.5) as
regularization, and pooling layers with parameter ~60 million.

• Won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC’12) with error rate of 15.3%, the second was 26.2%,
was the first DNN method to be used in the challenge.

• Had 11x11 filters; all winner methods used DNNs after this.

10

https://media.wired.com/photos/5c1002bdbbcfae2d7b3dea28/3:2/w_2240,c_limit/hinton1-FINAL.jpg
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://www.cse.iitm.ac.in/~miteshk/CS6910.html
https://www.image-net.org/

There were
resistance to this
“Revolution”

https://www.reddit.com/r/MachineLearning/comments/4lq701/yann_lecuns_letter_to_cvpr_chair_after_bad/ https://arxiv.org/pdf/1202.2160
11

• Rejected paper
uses CNN as a step
in feature
extraction for
parsing/
segmenting scene

• The first CNN
architecture
created was
LeNet-5 which was
trained on CPU for
handwritten
character
recognition.

https://www.reddit.com/r/MachineLearning/comments/4lq701/yann_lecuns_letter_to_cvpr_chair_after_bad/
https://arxiv.org/pdf/1202.2160

http://mit6874.github.io https://dellaert.github.io/21F-x476/

• Many tasks which were done by traditional image
processing techniques are being replaced by Deep
Learning which uses CNNs.

• Though these tasks face many challenges that are
inherent in images.

Deep Learning replaces Image Processing tasks using CNNs

12

http://mit6874.github.io/
https://dellaert.github.io/21F-x476/

Technical aspects of CNNs

13

What is convolution?
• Convolution is the area under the curve 𝑓 𝜏 weighted by g 𝑡 − 𝜏
• In continuous case, the convolution of two functions 𝑓 and 𝑔 can be written as

• Terminology:
• The function 𝑓 is referred to as the input
• The function 𝑔 is referred to as the kernel/filter
• The output (𝑓 ∗ 𝑔)(𝑡) is referred to as the feature map

• Two examples of convolution over different function 𝑓 (the input) are given below:

Pushpak Bhattacharyya, DL-NLP slides, IITB 2023; Dripta Mj, DL-1 slides, RKMVERI 2020; https://en.wikipedia.org/wiki/Convolution
14

https://en.wikipedia.org/wiki/Convolution

What is Convolutional Neural Networks (CNNs)?
• CNN: Neural Networks using convolution in place of general matrix multiplication in at least

one layers, i.e., neural network for grid like topology; the filter/kernel component is learnt.
• The name CNN indicate that the mathematical operation convolution is used
• In ML, we work on discrete set of data points, for data sampled at regular intervals (say at

integer values), the convolution can be defined as

• In many problems, the input dataset is usually a multidimensional array (tensor)
• In practice, the inputs and the kernel are finite dimensional, hence their values are taken to

be 0 outside a finite set of points; hence can be implemented as a finite summation.
• Convolution can be implemented in more than one dimension simultaneously, for example

using a 2D kernel 𝑘, using an input image 𝑥

Dripta Mj, ML-1 slides RKMVERI 2020
15

Example of Convolution using a kernel and image in 2D

Dripta Mj, ML-1 slides RKMVERI 2020

• Element wise
multiplication,
just like dot-
product of
vectors.

• 4*2+2*1+7*2+
1*4+4*2+5*1+
8*4+0*0+6*3
= 91

16

Part of Image

Kernel/filter

Example of Convolution using a kernel and image in 2D

Dripta Mj, ML-1 slides RKMVERI 2020

• Element wise
multiplication,
just like dot-
product of
vectors.

• 2*2+7*1+3*2+
4*4+5*2+2*1+
0*4+6*0+1*3
= 48

17

Example of Convolution using a kernel and image in 2D

Dripta Mj, ML-1 slides RKMVERI 2020

• Element wise
multiplication,
just like dot-
product of
vectors.

• 7*2+3*1+1*2+
5*4+2*2+9*1+
6*4+1*0+3*3
= 85

18

Example of Convolution using a kernel and image in 2D

Dripta Mj, ML-1 slides RKMVERI 2020

• Element wise
multiplication,
just like dot-
product of
vectors.

• 1*2+4*1+5*2+
8*4+0*2+6*1+
5*4+1*0+3*3
= 83

19

Example of Convolution using a kernel and image in 2D

Dripta Mj, ML-1 slides RKMVERI 2020

• Element wise
multiplication,
just like dot-
product of
vectors.

• 4*2+5*1+2*2+
0*4+6*2+1*1+
1*4+3*0+5*3
= 49

• And so on…

20

Example of Convolution using a kernel and image in 2D

Dripta Mj, ML-1 slides RKMVERI 2020

• Element wise
multiplication,
just like dot-
product of
vectors.

• 6*2+1*1+3*2+
3*4+5*2+2*1+
9*4+4*0+0*3
= 79

21

Key Aspects of CNNs

Dripta Mj, ML-1 slides RKMVERI 2020

• Sparse connectivity
• Traditional Neural Network layers have a separate parameter for interaction b/w each

i/p and o/p unit; In CNN, kernel preserves the 2D spatial structure of input images.
• In CNN, kernels are used. Which have size smaller than that of the inputs, hence the

number of parameters are much less – lesser chance of overfitting
• Fewer operations are required to compute the outputs – less training time of models

Traditional Neural Networks with Fully connected
layers

CNNs with kernels

22

Key Aspects of CNNs

Dripta Mj, ML-1 slides RKMVERI 2020

• Sharing of parameters:
• In traditional neural networks, a parameter is used only once while evaluating the o/p

of a unit.
• In CNN, the same set of parameters are used for all the inputs
• Do not need to learn separate parameters for every input. Only need to learn the same

set of parameters for all the inputs

Traditional Neural Networks with Fully connected
layers

CNNs with kernels

23

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

• Let’s consider an 1-D example, we have 4 weights, (i.e., red,
blue, yellow and green values in the filter)

• If instead we use a fully-connected layer, we would use 9x4 =
36 (9 blue for first layer, 4 magenta for second layer)
connections.

• The bias of a particular layer is the number of neurons in that
layer, we don’t consider input as a layer.

• Hence the weights to be learned for this example is 9x4+4 = 36
weights+4 bias = 40 parameters

• If instead we use kernel/filter using CNN, we have 4 weights+1
bias = 5 parameters, hence the number of parameters is
significantly reduced.

• In images, input sizes are high, i.e., (256x256x3 = 196608 pixels,
which can lead to million of parameters in a couple of layers
using very few fully-connected neurons)

Key Aspects of CNNs – parameters count example

24

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Key Aspects of CNNs

Dripta Mj, ML-1 slides RKMVERI 2020 https://en.wikipedia.org/wiki/Kernel_(image_processing)

• Equivariance to translation – if
the location of a certain feature is
changed, then the output of the
convolution also changes
accordingly

• Feature - pattern, characteristic,
or attribute extracted from the
input data, such as edges,
textures, corners, or shapes which
helps in pattern recognition.

• Same features occur at multiple
locations in the input space

• The o/p of the convolution
indicate whether different
features occur in the input space

25

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Key Aspects of CNNs
• For example, an edge detecting filter will

generate a 2D map of the occurrence of
such an edge in the i/p

• Convolution is not equivariant to
transformations such as scaling and
rotations.

• The higher the layer (i.e., closer the layer
to the output layer), the more complex the
feature becomes

• Initial layers detects edges, color etc. from
raw pixels

• These features are used in the higher
layers to detect more complex shapes

• Again these features are then used to
detect more higher level features
belonging to a class etc.

Dripta Mj, ML-1 slides RKMVERI 2020 https://en.wikipedia.org/wiki/Kernel_(image_processing)
26

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Padding

Dripta Mj, ML-1 slides RKMVERI 2020

• Why do we need Padding?
• Risk of losing information from the

edges of i/p with no padding
• Without padding in DNNs, the

inputs to the later layers will be
significantly reduced in size

• Used to preserve image/feature
sizes

• Can also be used to make the
feature volume of the next layer of
a desired size/dimension

27

Pooling

Dripta Mj, ML-1 slides RKMVERI 2020; https://cs231n.github.io/convolutional-networks/#pool

• Replaces the output with a summary statistic of the
nearby outputs – reduces computational/memory
requirements, requires no additional parameters to be
learnt

• Motivation: pooling assists in making a representation
approximately invariant to small translations of the input

• Pooling is useful as in many cases we are concerned
about the presence of some feature rather than their
exact location

• Example:
- Max pooling: Computes the maximum output within

a rectangular neighbourhood
- Average pooling: Average of a rectangular

neighbourhood
- 𝐿- norm of a rectangular neighbourhood

28

https://cs231n.github.io/convolutional-networks/

Max Pooling

Dripta Mj, ML-1 slides RKMVERI 2020

• Computing
the
maximum
o/p in a
3x3
neighbour
hood

29

Max Pooling

Dripta Mj, ML-1 slides RKMVERI 2020

• Computing
the
maximum
o/p in a
3x3
neighbour
hood

30

Max Pooling

Dripta Mj, ML-1 slides RKMVERI 2020

• Computing
the
maximum
o/p in a
3x3
neighbour
hood

31

Stride

Dripta Mj, ML-1 slides RKMVERI 2020

• Some positions of the kernel can be skipped to reduce
the computational cost.

• Samples are taken every (say) 𝑠 grid points in a particular
direction

• Here 𝑠 = 2 is used
• 𝑠 is referred to as the stride of the downsampled

convolution
• The more the stride, the lower the dimension of the

feature in the next block; i.e., more compression of
features in the feature space.

• It is possible to define a separate stride 𝑠 for each
direction of motion

(1) (2)

(3) (4)32

Stride

Dripta Mj, ML-1 slides RKMVERI 2020

• (1) – we can use strides in Convolution
operations to reduce the size of feature map.

• (2) – we can have different dimensions for
kernels for generating different sizes of feature
maps.

• (3) – we can have activations 𝒜(⋅) like
𝑅𝑒𝐿𝑈 ⋅ /𝑆𝑖𝑔𝑚𝑜𝑖𝑑(⋅) etc., to generate output
from feature maps

(1)

(2)

(3) 33

Receptive field of a kernel/filter
• Say, we have an input of 5x5 pixel, which

is applied to a kernel of size 3x3, the o/p
will be of size 3x3.

• Again, if we apply the same kernel on the
result, the output will be of size 1x1.

• The total number of parameters =
(3x3+1)*2 = 20

• Similarly, if an input of size 5x5 pixel is
convolved with a kernel of size 5x5, we
get a output of size 1x1 directly.

• The total number of parameters =
(5*5+1) = 26

• Hence, we get the same receptive field by
applying two 3x3 kernels in series as
applying one 5x5 kernel, which leads to
more parameters 34

Different types of convolution

Padding=0, Stride=1 Padding=1, Stride=1 Padding=0, Stride=2 Padding=1, Stride=2

https://github.com/vdumoulin/conv_arithmetic
https://arxiv.org/pdf/1603.07285

• Here, a kernel size of 3x3 is used to demonstrate the different types of convolution
operations

• Blue maps are inputs and cyan maps are outputs

35

https://github.com/vdumoulin/conv_arithmetic
https://arxiv.org/pdf/1603.07285

Different types of convolution

Padding=1, Stride=2,
Kernel size=3x3

Padding=0, Stride=2,
Kernel size=3x3

https://github.com/vdumoulin/conv_arithmetic

• Blue maps are inputs and cyan maps are outputs

Padding=2, Stride=1,
Kernel size = 4x4

36

https://github.com/vdumoulin/conv_arithmetic

Different types of convolution

Padding=0, Stride=2 Padding=1, Stride=2

https://github.com/vdumoulin/conv_arithmetic https://www.geeksforgeeks.org/machine-learning/what-is-transposed-convolutional-layer/

• Dilated convolution
• Deconvolution is also called as transposed convolution
• An operation in CNN that increases the spatial dimensions (height and width) of its input

feature maps effectively upsampling the data
37

https://github.com/vdumoulin/conv_arithmetic
https://www.geeksforgeeks.org/machine-learning/what-is-transposed-convolutional-layer/

Parameters and feature dimension
calculations in a CNN

38

Examples of convolutions and parameter calculations
• Here, we will consider the dimensions of feature maps as input and calculate the number of

parameters for a particular conv layer
• Let us consider that the features are present in a tensor represented by BxCxHXW where

B=batch size; C=number of channels (channel first order); H=height of the tensor; W=width of
the tensor

• Formula to calculate the output of the feature map, given input 𝑊;×𝐻;×𝐶; the Conv layer
need 4 hyper-parameters (i) number of filters = K; (ii) the filter size = F, (iii) the stride = S (iv)
the zero padding P

• This produces an o/p of 𝑊-×𝐻-×𝐾 (though I don’t recommend memorizing the formula)

𝑊- =
ABCDE-F

G + 1 and 𝐻- =
JBCDE-F

G + 1

W

H

W

H C H
W

C

B

https://cs231n.stanford.edu/
39

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

• This is a bit non-standard example, where the kernel is of bigger size than the input feature
volume; taken from Stanford lectures.

• Let’s consider an input of size 1x1x1x3072 which is applied to a kernel of size 1x10x1x3072
• Here the feature dimensions are measured in BxCxHxW
• Feature of size 1x1x1x3072 is multiplied by each of the channel of 1x10x1x3072 to get the

output dimension of 1x10x1x1
• Since there are 10 output channel, bias = 10 (each channel of the output contributes to a

bias of 1)
• The number of parameters of the kernel/conv operation = 1x10x1x3072+10 = 30730

1x1x1x3072

1x10x1x3072

1x10x1x1

https://cs231n.stanford.edu/
40

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

• Here, stride = 1, H=32; W=32; kernel size = 3x5x5
• Hence each of the 3x5x5 block of kernel convolves with the 3x5x5 block of the input volume

to produce output feature
• After the convolution is done, the resultant is of size 1x1x28x28
• The convolution kernel has a bias of 1; also the output channel is 1, for which a bias of 1 is

contributed to the whole operation
• The number of parameters of the kernel = 3x5x5+1 = 76

1x3x32x32

1x3x5x5

1x1x28x28

27

27

5

5

https://cs231n.stanford.edu/

⋯

41

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

• Here, stride = 1, H=32; W=32; kernel size = 3x5x5 (channel first kernel) and 6 filters in total
• Hence there are 6 outputs of dimension 28x28; the final output dimension=1x6x28x28
• The total parameters: 6x3x5x5+6= 456
• Since there are 6 filters, there are 6 biases
• The number of filters will give the number of channels of output

1x3x32x32

6 as bias 1x6x28x28

⋯
⋯

6 filters of conv layer
6 output feature maps

⋯
6x3x5x5

https://cs231n.stanford.edu/
42

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

• Here, stride = 1, H=32; W=32; kernel size = 3x5x5 (channel first kernel) and 6 filters in total
• Hence there are 2 outputs of dimension 6x28x28; the final output dimension=2x6x28x28
• The total parameters: 6x3x5x5+6= 456
• Since there are 6 filters, there are 6 biases
• This example shows when there is a batched input, there is a batched output as well

6 as bias

2x6x28x28

⋯

⋯

6 filters of conv layer

2 output feature maps

⋯
6x3x5x5

https://cs231n.stanford.edu/

2x3x32x32
⋯

43

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

• A sample of convnet is provided, here we see that we apply repeated convolution to make
the feature sizes as smaller and thicker (by channels) as possible; 0 padding and stride of 1

• The number of kernels should match the output of the channel of the feature map, hence
we use different number of kernels to determine the thickness (of channel) of feature map

• The number of parameters for these two conv operations:
• 6x3x5x5+6+10x6x5x5+10 = 1966
• First conv layer has 6 filters hence bias of 6; similarly for 2nd conv layer, it has 10 filters;

hence a bias of 10

1x3x32x32

6x3x5x5

https://cs231n.stanford.edu/

10x6x5x5

1x6x28x28 1x10x24x24

44

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

• Here, we apply 1x1 convolution of 64
channel; we apply 32 of them all together

• The number of parameters for these two
conv operations:
• 32x64+32 = 2080

• Convolution of Cx1x1 transforms an input
volume of 1xCxHxW to 1xHxW, hence we
can apply any number of such convolution
to shrink or expand the input volume.

1x64x56x56

32x64x1x1

https://cs231n.stanford.edu/

32x56x56⋯
32 filters

45

https://cs231n.stanford.edu/

Examples of convolutions and parameter calculations

• Let’s assume we have an input of size 1x3x7x7;
what are the feature volumes and parameters of
the whole CNN?

• Since out-channels = 3; hence the output channel
of the feature volume=3;

• First we add a padding of 1 (on all side of the
image) then we perform convolution using a
stride of 2

• Number of params for this layer = 3x3x3x3+3=84

1x3x7x7

padding = 1

Padding = 1
applied; 1x3x9x9

Final dimension = 1x3x4x4
Kernel =
3x3x3x3;
Stride = 2

46

Examples of convolutions and parameter calculations

• Since out-channels = 3; hence the
output channel of the feature
volume=3;

• First we add a padding of 3 (on all
side of the image) then we
perform convolution using stride
1

• Number of params for this layer =
3x3x3x3+3=84

1x3x4x4

padding = 3
Stride=1; kernel

size = 3x3x3

Padding = 3 applied;
1x3x10x10

Final volume=
1x3x8x8

47

Examples of convolutions and parameter calculations

• Batchnorm2D independently normalizes,
scales, and shifts each channel of the input
feature map

• Hence, the number of parameters is the
number of channel x 2; here it is 3 for
gamma and 3 for beta as it has 2 parameters
per channel.

• The dimension of the feature volume doesn’t
change in this case.

• Hence the total number of parameters for
this layer is 6

1x3x8x8

Batchnorm2D
1x3x8x8

48

Examples of convolutions and parameter calculations

• Maxpool doesn’t have any extra
parameters

• Maxpool just collects the most prominent
features and downsamples the feature
block

• Hence the total number of parameters for
this layer = 0

Maxpool2D
2x2 1x3x4x4

1x3x8x8

49

Examples of convolutions and parameter calculations

• Flatten doesn’t have any extra
parameters

• Flatten just flats the block to make it
compatible as an input to a fully
connected layer

• Hence the total number of parameters
for this layer = 0

Flatten
1x3x4x4 1x48

50

Examples of convolutions and parameter calculations

• Structure of fully connected layers are just
like complete bipartite graph

• The layer to which it is getting connected has
number of nodes as the bias

• Hence the number of parameters =
48x10+10=490

Flatten
2x2

1x48

48
10

51

Examples of convolutions and parameter calculations

• Batchnorm1D independently normalizes,
scales, and shifts each neuron/node of the
input feature map

• There are 2 parameters for each of the
neurons, hence this layer has 10x2=20
parameters

Batchnorm 1D

10 10

52

Examples of convolutions and parameter calculations

• Fully connectd layers have 10x1+1 = 11
parameters for this layer

Fully
connected

layer10
10

53

Examples of convolutions and parameter calculations
• Sigmoid doesn’t have any parameter of

it’s own, it’s an activation function
• Total parameters of this network:

84+84+6+0+0+490+20+11 = 695
• This network is a very simple neural

network, can be used for binary
classification of 3-channel 7x7 images

54

Features learnt by a CNN

55

Feature learnt by the CNNs
• Visualization obtained by passing an input image through a trained CNN, then selectively

projecting activations back into image space using a “Deconvnet” (de-convolutional network)
• Early layers detect edges, colors and low-level features

56
https://arxiv.org/abs/1311.2901

https://arxiv.org/abs/1311.2901

Feature learnt by the CNNs
• During the reverse pass, they used the stored max-pooling indices to put features back in

their original locations (un-pooling), then inverted the convolution/ReLU layers to
reconstruct which image patterns activated specific neurons

• Mid-level layers captures textures/shapes

57

Feature learnt by the CNNs
• Higher layers

(close to the o/p
layer) responds
to object parts
or entire objects

https://arxiv.org/abs/1311.2901
58

https://arxiv.org/abs/1311.2901

Some more architectures

59

CNN Architectures - VGGNet

https://mit6874.github.io/ https://cs231n.stanford.edu/ https://arxiv.org/abs/1409.1556

• Significantly deeper (with 16-19 layers) than
AlexNet (8 layers)with about 140 million
parameters, ~7.3% in top 5-error.

• Used smaller filter’s sizes, a stack of three 3x3 conv
(stride 1) layers (30 parameters) has the same
effective receptive field as one 7x7 conv layer (50
parameters).

• Made deeper networks with lesser parameters, the
more deeper the more non-linearity it captures.

• Used ensembles, features of deeper layers
generalizes well to other tasks, trained on 4 NVIDIA
Titan Black GPUs for 2-3 weeks

• VGGNet reinforced the notion that CNN have to
have a deep network of layers in order for the
hierarchical representation of visual data to work

60

https://mit6874.github.io/
https://cs231n.stanford.edu/
https://arxiv.org/abs/1409.1556

https://mit6874.github.io/ https://cs231n.stanford.edu/ https://arxiv.org/pdf/1409.4842

• Had no fully connected layers, ~5 million
parameters, ~6.7% top 5 error; 22 layers.

• Used Inception modules – good network
topology (network within a network) and
then stack these modules on top of each
other

• Apply parallel filter operations on input from
previous layer, multiple receptive field sizes
for conv (5x5, 3x3, 1x1), pooling operations
(3x3) and concatenate together channel-
wise.

• Used “bottleneck layers” that use 1x1
convolutions to reduce feature channel size.

• Uses Average pool to 1x1 and then a final
Softmax layer for the final classification
output

CNN Architectures - GoogLeNet

61

https://mit6874.github.io/
https://cs231n.stanford.edu/
https://arxiv.org/pdf/1409.4842

CNN Architectures - ResNet

https://mit6874.github.io/ https://cs231n.stanford.edu/ https://arxiv.org/pdf/1512.03385

• Problem of vanishing and exploding gradients in training DNNs.
• Deeper model should learn at least as good as the shallow layer

model – copying the learned layers from shallower model and
setting additional layers to identity mapping, i.e., H(x) = F(x)+x = x, if
F(x)=0; this is still one of the best architectures we have till date!

• Surpasses human level (5.1% error) giving a top 5
error of 3.6%

• 152-layer model, winner of classification and
detection competitions in ILSVRC’15 and COCO’15

• Showed that if we keep on stacking layers (deeper
models), we might under-perform; not by
overfitting! rather harder to optimize

62

https://mit6874.github.io/
https://cs231n.stanford.edu/
https://arxiv.org/pdf/1512.03385

Transfer Learning in CNNs

63

Transfer Learning in CNNs

Dripta Mj, ML-1 slides RKMVERI 2020

• Training a CNN model from scratch is difficult:
• Need a large dataset to train the model
• Well-known architectures takes weeks to train using multiple GPUs

• Inspiration:
• Low-level features such as edge, corner, color-blob detectors are generic
• High-level features become more specific to the classes in the original trained dataset

• Extraction of features
• Remove the last Fully-connected layer, but treat all the other layers as fixed
• On passing a new dataset yields a features of fixed dimension for each example
• Use the resultant features to train a new classifier

• Fine-tuning CNN model
• Fine-tune the weights of the pre-trained model using back-propagation
• The whole network or some higher layers (close to the o/p) can be fine-tuned

64

Transfer Learning in CNNs

Dripta Mj, ML-1 slides RKMVERI 2020

• These scenarios
can be applied
to transfer
learning in
Transformers as
well – which are
known for
training on
large datasets

• Models pre-
trained on large
datasets can be
fine-tuned on
different down-
stream tasks

65

Demo – Multiclass Image segmentation:
segmenting wild plants

Demo code: https://colab.research.google.com/drive/1Rvhq3TwIQIDBbB3QCBBuA6hayI4PmABn

Code accompanying slides:
https://colab.research.google.com/drive/154-NXcKOYnVRVbCJMZsQFCjoDDb4_lts

66

https://colab.research.google.com/drive/1Rvhq3TwIQIDBbB3QCBBuA6hayI4PmABn
https://colab.research.google.com/drive/154-NXcKOYnVRVbCJMZsQFCjoDDb4_lts

Demo – ResUNet++ for Multiclass
Image Segmentation
• Improved ResUNet architecture for colonoscopy

segmentation.
• Residual unit makes deep network easy to train, and

skip connection helps to propagate the information
without degradation.

• Used Squeeze and Excitation block - each channel is
squeezed by using Global Avg. pooling for generating
channel-wise stats, the second step is excitation for
active calibration.

• Atrous Spatial Pyramid Pooling (ASPP) - captures
multi-scale information precisely by allowing
controlling field of view, and resampling features at
multiple scales.

• Uses attention mechanism; very lightweight network,
has around 4.06 M parameters

https://arxiv.org/pdf/1911.07067
67

https://arxiv.org/pdf/1911.07067

Demo – ResUNet++ for Multiclass Image Segmentation
• There are two classes of wild

plants, we need to divide the
pixel into either class-0
(background, black), class-1
(wild plant, red) or class-2
(wild plant, green)

• We download the dataset,
divide into 60-10-30 for train,
validation and test split

• Use Softmax as output in the
last layer of the model, input
images are 3-channel of size
256x256

• We use pytorch and google
colab for training.

68

• We use Dice coefficient and Intersection over Union
(jaccard) as metrics

• These are set operations, the classes 0,1,2; which can
be written as one hot vectors over the pixel as [1, 0, 0],
[0, 1, 0], and [0, 0, 1], hence, the mask output after
softmax will be 3x256x256, where each of the pixel will
have a probability values, we do an argmax to compute
the scores/metrics as epochs progresses

• We have a train, validation and test function
• The train function trains the model, along with

dumping the current statistics of the metrics for each
epoch

• Validation dumps the statistics for each epoch on
validation dataset

• Test epochs dumps the statistics and sample predictions
for the test dataset

Demo – ResUNet++ for Multiclass Image Segmentation

https://vipanchikatthula.github.io/project/jaccard-cosine-similarity/ https://i.sstatic.net/OsH4y.png
69

https://vipanchikatthula.github.io/project/jaccard-cosine-similarity/
https://i.sstatic.net/OsH4y.png

End of Lecture!

70

